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Abstract

We investigate the role of skill complementarities in production and mobility across cities. The

nature of the complementarities determines the equilibrium skill distribution across cities. With

extreme-skill complementarity, the skill distribution has thicker tails in large cities; with top-skill

complementarity, there is first-order stochastic dominance. Using wage and housing price data, we

find robust evidence of thick tails in large cities: large cities disproportionally attract both high and

low-skilled workers, while average skills are constant across city size. This pattern of spatial sorting

is consistent with extreme-skill complementarity, where the productivity of high-skilled workers and

of the providers of low skilled services is mutually enhanced.
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“If I can make it there I’ll make it anywhere...” (Frank Sinatra – “New York, New York”)

“Rock Bottom, yeah I see you, all my Detroit people” (Eminem – “Welcome 2 Detroit”)

1 Introduction

Complementarities are important for the productivity and composition of workers in firms, for student

achievement in classrooms (peer effects) and for the accomplishments of teams. The presence of more

productive co-workers affects the performance of some if not all other co-workers, and this in turn

determines who chooses to work where and with whom. In this paper we investigate the role of

complementarities at an aggregate level – the level of a city. Complementarities are akin to knowledge

spillovers (Marshall, 1890), but rather than flowing between innovating firms, complementarities affect

the productivity of differentially skilled workers within the local labor market. We propose a model

that elucidates both the nature of cities and the role of complementarities in production. Our main

theoretical finding is that the specifics of the complementarities determine the distribution of skills

within a city and how it varies with city size. Our approach sheds new light on the sources of the

urban wage premium, a major puzzle in the literature. It is well known that wages in large cities are

higher, but it is unclear why. Little is known about the skill composition across cities. Are wages higher

because workers in large cities are more skilled? Most people can provide casual evidence that the skill

level in the top percentiles of New York and large cities in general is higher than anywhere else. Making

it there – in New York, NY – rather than in Akron, OH is the ultimate aim of many professionals in

many trades: artists, musicians, advertising and media professional, consultants, lawyers, financiers, ...

Yet, cities are not just populated by superstars and high earning professionals, even if these are highly

visible.

In this paper, we address the sorting decision of workers over the entire range of skills, including

medium and low skills. Our main empirical and hitherto undocumented finding is that the distribution

of skills in the US has thick tails in large cities: large cities disproportionally attract both high and low-

skilled workers, while average skills are constant across size. From the theory, this allows us to conclude

that there are complementarities between high and low-skilled workers, which mutually boosts their

productivity.

We consider two competing hypotheses concerning the complementarities between skills. A first

hypothesis is that the superstars boost their productivity most in the presence of other high-skilled

workers. For example, under this assumption the best lawyers are more productive when surrounded

by top legal assistants. Or the cancer surgeons at Sloan Kettering in NY work best with top residents
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and top nurses, whereas the General Practitioners with fewer years of training and fewer fellowships

collaborate with less trained nurses and assistants. We refer to this hypothesis as Top-Skill Comple-

mentarity. A second hypothesis posits that high-skilled workers boost their productivity most with

low-skilled services. What dominates in the aggregate is that the high-skilled worker has a dispropor-

tionately high productivity increase from the presence of low-skilled services. Given the value of her

time, at her job she hires more low-skilled administrative help, other services (sales, legal, catering...)

and she demands low-skilled services through child care, schooling and help in the household. We label

this hypothesis as Extreme-Skill Complementarity.

The premise of our analysis is that the presence of those complementarities determines the location

decision of differentially skilled workers, i.e. spatial sorting. We propose a theory that identifies a one

to one relationship between those features of the technology, on the one hand, and the equilibrium

outcome of the skill distributions across cities, on the other. Our model is a tractable version of the

multi-worker matching model à la Kelso and Crawford (1982) applied to a concrete labor market setting.

Complementarities determine competitive wages and therefore the location decision of workers. Our

objective is to uncover the nature of the complementarities from the observed sorting pattern of workers,

i.e. the skill distribution across cities. This is very much in the spirit of Krusell, Ohanian, Rios-Rull

and Violante (2000) in the macro literature, who derive properties of complementarities in technology

from the observed wage distributions.

Our labor market model is tailored to investigate the nature of cities, and the contribution of the

paper is threefold: First, we identify a mechanism of skill complementarities and the resulting skill

distribution that we can explicitly solve. This, despite the fact that models with varying elasticity of

substitution are notoriously hard to solve analytically, as Krusell, Ohanian, Rios-Rull and Violante’s

(2000) dynamic model illustrates. Second, qualitatively we discover an extremely robust empirical

pattern of thick tails in the distribution of skills: average skills are independent of city size, while

the standard deviation increases with city size. In conjunction with the results from the theory, this

allows us to conclude that the observed pattern of skills is due to the complementarities between

extreme skills. We believe that the theoretical link between the complementarities and the distribution

in local labor markets is both theoretically and empirically novel. Third, our analysis makes further

headway in our understanding of one of the major outstanding puzzles in urban economics, namely the

mechanism behind the urban wage premium. Our findings establish that wages are not higher because

skills are uniformly higher. In fact, average skills are constant across cities. Wages are therefore higher

only to compensate for higher housing prices. But our findings also show that the skill composition is
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important for the distribution of wages and productivity. Complementarities between extreme skills act

as a multiplier of existing differences in total factor productivity across cities. Our theory of differential

complementarities provides an explanation for higher wage and skill inequality in large cities.

The normative implications in the baseline model are particularly relevant when evaluating in-

equality. Our results show that from a social welfare viewpoint, wage inequality and urbanization are

intimately related. This can have far-reaching policy implications. Consider for example the current

income taxation system that progressively taxes individuals and households on their nominal income.

Effectively, given the urban wage premium, this means that the current fiscal system differentially taxes

cities of different sizes. The implication is that the population distribution across different size cities is

distorted, and as a result, aggregated output produced is suboptimal.

Prices play a key role in our equilibrium model of city choice. Heterogeneously-skilled citizens earn a

living based on a competitive wage and choose housing in a competitive housing market. Under perfect

mobility, their location choice will make them indifferent between consumption-housing bundles, and

therefore between different wage-housing price pairs across cities. Wages are generated by firms that

compete for labor and that have access to a city-specific technology summarized by that city’s total

factor productivity (TFP). This naturally gives rise to a price-theoretic measure of skills. Larger cities

pay higher wages, and are more expensive to live in. Under worker mobility, revealed preference location

choices imply that wages adjusted for housing prices are a measure of skills.

Using this price based measure of skills, we can establish two robust empirical facts: average skills are

constant across cities, and the standard deviation increases with city size. Big cities are characterized by

big real inequality. The city size-wage premium is thus not driven by a high average skill level. Instead,

larger cities have thicker tails in the skill distribution and disproportionately attract both higher and

lower skilled agents. In New York City for example there is not only a huge contingent of high-skilled

workers in Manhattan, but there are also disproportionately many low-skilled workers living in the

South Bronx and Newark. Similarly, while Detroit has disproportionately many low-skilled individuals

and a reputation for inner city poverty, it also disproportionately attracts high-skilled individuals, many

of whom live in the wealthy neighborhood of Bloomfield Hills. In that respect, large cities like New

York and Detroit are more similar to each other than they are to small cities because of the systematic

pattern of thick tails in the skill distribution of large cities.

We document that this systematic pattern of spatial sorting is extremely robust to different mea-

sures: we use educational attainment and occupation as direct measures of skills and control for indus-

try selection, we investigate the role of migration, we consider different definitions of large versus small
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Figure 1: Wage and skill distribution for small and large cities, Kernel density estimates (Epanechnikov
kernel, bandwidth = 0.1); Wage data from the 2009 Current Population Survey (CPS) on 25,584 workers
in 202 small CBSAs (population between 100,000 and 1m) and 34,999 workers in 21 large CBSAs (larger
2.5m); A. Wages; B. Skills. Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01.

cities, we use three different data sources for local housing values, and we include local price differences

in consumption goods. To our knowledge, this pattern of spatial sorting – that mobility across cities

driven by differential skill complementarity determines the skill distribution – has not been documented

in the literature.

The thick tails in the skill distribution are nonetheless consistent with the well-documented city-size

wage premium. The gap between average wages in the smallest cities in our sample (with a population

of around 160,000, more than 100 times smaller than New York) and the largest cities is 25%. In

Figure 1.A, we plot a kernel of the wage distribution of those living in all cities larger than 2.5 million

inhabitants and that of those in cities smaller than one million inhabitants. Not only are average wages

higher, there is a clear first-order stochastic dominance relation. At all wage levels, more people earn

less in small cities than in large cities. This clearly indicates that there is a city-size wage premium

across the board.

However, larger cities tend to be more expensive to live in, so in order to be able to compare

skill distributions, we need to adjust for housing prices. Identical agents will make a location choice

based on the utility obtained, which depends both on wages and the cost of housing. Indifference for

identical agents will therefore require equalizing differences. We use homothetic preferences to adjust for

housing consumption and construct a housing price index based on a hedonic regression to calculate the

difference in housing values across cities. Figure 1.B displays the kernel of the induced skill distribution.
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Our main finding is that the skill distribution in larger cities has fatter tails both at the top and at

the bottom of the distribution. Large cities disproportionately attract more skilled and more unskilled

workers. This finding sheds light on the nature of the underlying technology: the fat tails result is

consistent with Extreme-Skill Complementarity.

A key feature of our approach is the price-theoretic measure of skills which allows us to characterize

a smooth distribution of skills. This is in contrast to the common approach of using observable skills

such as attained education levels or years of education. To investigate the role of observables in the

spatial sorting pattern, we decompose the difference in the skill distribution between large and small

cities. We find an asymmetry: in the lower tail, virtually none of the city size difference is explained

by observables, while in the upper tail about half is explained, mainly by education. The high-skilled

are more educated in large cities than in small cities, while the low-skilled are equally educated across

city sizes.

There are of course other possible alternative explanations. And while we cannot exhaustively an-

alyze all alternatives empirically, we can rule out a few prominent candidate alternatives and establish

the robustness of our findings with respect to industry composition, migration and age or life cycle

patterns. We discuss competing theoretical explanations such as the role of home versus market pro-

duction in a world where agents have preferences for low-skilled services. We also investigate the role

of non-homothetic preferences and within-city sorting.

2 Related Literature

The model we propose builds on the urban location model in Eeckhout (2004) and Davis and Ortalo-

Magné (2009) (see also Guerrieri, Hartley, and Hurst (2011), who augment the model with local exter-

nalities) where identical citizens who have preferences over consumption and housing choose a city in

order to maximize utility. This model has been used to explain population dynamics (see also Gabaix,

1999) and expenditure shares. Because of differences in productivity across cities, wages differ and

housing prices adjust in function of the population size of the city. Productivity differences are due

to TFP and agglomeration effects. Given perfect mobility and identical agents, utility equalizes across

cities. Our main innovation over the existing model is the introduction of heterogeneity in the inputs

of production (skills) which gives rise to a distribution of skills within the city. This is necessary to

meaningfully address sorting of heterogeneous agents within and across cities. Technology allows for

varying degrees of complementarities between different skill types. Equilibrium is determined by the

sorting decision of agents.
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In recent work, Behrens, Duranton and Robert-Nicoud (forthcoming) analyze the distribution of

heterogeneous agents across cities. Their model predicts perfect sorting by talent: New York attracts

all the Ph.D.’s, Los Angeles and Chicago all the Masters, ..., and all the high school dropouts locate in

small cities like Janesville, WI. Within-city heterogeneity in productivity is due to an ex post shock upon

which workers cannot relocate any more. As a result, they postulate first order stochastic dominance

of the (degenerate) talent distributions rather than the thick tails that our model predicts and that we

find in the data. Their result of perfect sorting in talent is a direct consequence of assuming that each

worker consumes one unit of land independent of his wage. Highly talented workers with high wages are

therefore, relatively, much less affected by high housing costs in large cities than less talented workers.

In contrast, we do allow housing consumption to increase with wages and hence with talent in line with

overwhelming empirical evidence. In the equilibrium allocation of our model, all skill types locate in

all cities simultaneously, driven by complementarities in production. This not only gives rise to a wage

and skill distribution with full support as observed across cities of all sizes. Most importantly, it also

allows us to infer the pattern of complementarities in the technology that drive the location decision of

workers.

Finally, Van Nieuwerburgh and Weill (2010) set up a spatial equilibrium model to explain the in-

crease in housing price dispersion resulting from an increase in productivity dispersion of heterogeneous

workers. As in our model, worker mobility in response to productivity shocks and endogenous housing

prices are the main ingredients of their explanation. The key difference is the production function for

consumption goods which is linear in labor and does not feature skill complementarities.

There is a long tradition in the Urban Economics literature investigating differences across city

sizes, in particular with respect to varying standards of living between cities. Albouy (2008) calculates

real urban wages for 290 MSAs using the 2000 Census (5% IPUMS). Nominal wages are deflated using

rental prices from the Census and local prices for consumption goods. The ACCRA Cost-of-Living

index is the basis of the latter but not directly used because of its limited quality. Albouy regresses the

ACCRA index on local rental prices and uses the predicted values as an index for local cost-of-living

differences. Differences in real wages across MSAs are interpreted as quality-of-life differences. He finds

that when local differences in federal taxes, non-labor income and observable amenities such as seasons,

sunshine, and coastal location are controlled for, quality of life does not depend on size.

This body of work is consistent with our finding that the average of the skill distribution is remark-

ably constant across different sized cities. Of course, that does not allow us to conclude that there is no

sorting of high-skilled workers into large cities and of low skilled workers into small cities. As we will
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show below, the data reveals quite the contrary. The mean is constant across cities of different size,

but the variance increases substantially. The latter indicates an important role for sorting of high and

low skill types into large cities and of medium types into small cities.

Our findings are also related to the previous literature on variations in the measured skill distri-

butions across city sizes. Bacolod, Blum and Strange (2009) study the difference in skill distributions

across city sizes using jointly Census and NLSY data and the Dictionary of Occupational Titles (DOT),

defining skills as a combination of qualities instead of just education. They find a small variation in cog-

nitive, people, and motor skills across city sizes which they attribute to skills being defined nationally.

However they are not able to address local differences in occupational requirements of skills. Once they

look at differences in the Armed Forces Qualification Test (AFQT) and the Rotter Index – measures

of intelligence and social skills, respectively – they find that, even though the average scores are quite

similar across city sizes, the scores in large cities for the lowest scores (10th percentile) are much lower

than the ones in small cities. Similarly, the highest scores (90th percentile) are much higher in large

cities than in small ones, which is consistent with our robustness exercise reported in section 7.1 on

direct measures of education. Also Gautier and Teulings (2009, Table 1) report a higher measured

standard deviation in educational attainment across larger cities, which is consistent with our findings.

However, they find first order stochastic dominance rather than thick tails as we do, because the mean

is also higher. The reason is that their measure of skill is really a measure of wages. It is indepen-

dent of housing prices and it is constructed as predicted wages net of unobserved heterogeneity using

a Mincerian wage regression. Consistent with the urban wage premium, average wages increase with

city size. Instead, our measure of skills adjusts wages for the equilibrium mobility decision by means of

housing prices and we find that average skills are independent of city size. Together with the fact that

the standard deviation increases with city size, this gives us thick tails, and not first order stochastic

dominance. Note also that the first order stochastic dominance in Gautier and Teulings (2009) is not

consistent with the direct measures of skills as reported in section 7.1 or as documented by Bacolod,

Blum and Strange (2009). The distributions of those direct measures have thick tails in large cities –

equal means, higher standard deviation – just as our wage-based measure that is adjusted for housing

prices. In sum, while the wage distribution has been shown to satisfy first order stochastic dominance

in city size (increasing mean, increasing standard deviation), we establish that the distribution of our

wage-based measure of skills has thick tails in large cities (equal mean, increasing standard deviation).

There is also recent literature on increasing wage inequality over time.1 Autor and Dorn (2013)

1Moretti (2013), Baum-Snow and Pavan (2012) and Autor and Dorn (2013).
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document faster growth at both tails of the wage distribution between 1980 and 2005 and attribute this

to the falling cost of automating middle skill routines, the polarization hypothesis.

Finally, there is little direct evidence on the role of complementarities between heterogeneously-

skilled agents. One notable exception is the work by Hamilton, Nickerson and Owan (2003), who

analyze the effect of team composition on productivity in a textiles production plant. They find that

heterogeneous teams are more productive with average productivity held constant. While their setup

is very specific and other theories can certainly rationalize this outcome, their finding is consistent with

a technology that has extreme-skill complementarity.

3 The Model

Population. Consider an economy with heterogeneously skilled workers. Workers are indexed by a skill

type i. For now, let the types be discrete: i ∈ I = {1, ..., I}. Associated with this skill order is a level

of productivity yi. Denote the country-wide measure of skills of type i by Mi. Let there be J locations

(cities) j ∈ J = {1, ..., J}. The amount of land in a city is fixed and denoted by Hj . Land is a scarce

resource.

Preferences. Citizens of skill type i who live in city j have preferences over consumption cij , and the

amount of land (or housing) hij . The consumption good is a tradable numeraire good with price equal

to one. The price per unit of land is denoted by pj . We think of the expenditure on housing as the flow

value that compensates for the depreciation, interest on capital, etc. In a competitive rental market,

the flow payment will equal the rental price.2 A worker has consumer preferences over the quantities

of goods and housing c and h that are represented by: u(c, h) = c1−αhα, where α ∈ [0, 1]. Workers

are perfectly mobile, so they can relocate instantaneously and at no cost to another city. Because

workers with the same skill are identical, in equilibrium each of them should obtain the same utility

level wherever they choose to locate. Therefore for any two cities j, j′ it must be the case that the

respective consumption bundles satisfy u(cij , hij) = u(cij′ , hij′), for all skill types ∀i ∈ {1, ..., I}.

Technology. Cities differ in their total factor productivity (TFP) which is denoted by Aj . For now, we

assume that TFP is exogenous. We think of it as representing a city’s productive amenities, infrastruc-

ture, historical industries, persistence of investments, etc.3

2We will abstract from the housing production technology; for example, we can assume that the entire housing stock
is held by a zero measure of absentee landlords.

3In an earlier version of the paper, we endogenize Aj and let it be the result of agglomeration externalities. This is
also documented in the Additional Material Section.

8



In each city, there is a technology operated by a representative firm that has access to a city-specific

TFP Aj . Output is produced by choosing the right mix of differently skilled workers i. For each skill i,

a firm in city j chooses a level of employment mij and produces output: AjF (m1j , ...,mIj). Firms pay

wages wij for workers of type i. It is important to note that wages depend on the city j because citizens

freely locate between cities not based on the highest wage, but, given housing price differences, based

on the highest utility. Like land, firms are owned by absentee capitalists (or equivalently, all citizens

own an equal share in the mutual fund that owns all the land and all the firms).

Market Clearing. In the country-wide market for skilled labor, markets for skills clear market by market,

and for housing, there is market clearing within each city:

J∑

j=1

Cjmij = Mi, ∀i
I∑

i=1

hijmij = Hj , ∀j. (1)

where Cj denotes the number of cities with TFP Aj .

4 The Equilibrium Allocation

The Citizen’s Problem. Within a given city j and given a wage schedule wij , a citizen chooses con-

sumption bundles {cij , hij} to maximize utility subject to the budget constraint (where the tradable

consumption good is the numeraire, i.e. with price unity)

max
{cij ,hij}

u(cij , hij) = c1−αij hαij (2)

s.t. cij + pjhij ≤ wij

for all i, j. Solving for the competitive equilibrium allocation for this problem we obtain c?ij = (1−α)wij

and h?ij = α
wij
pj

. Substituting the equilibrium values in the utility function, we can write the indirect

utility for a type i as:

Ui = αα (1− α)1−α
wij
pαj

=⇒ wij = Uip
α
j

1

αα (1− α)1−α
, (3)

where Ui is constant across cities from labor mobility. This allows us to link the wage distribution

across different cities j, j′. Wages across cities relate as:

wij
wij′

=

(
pj
pj′

)α
. (4)
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The Firm’s Problem. All firms are price-takers and do not affect wages. Wages are determined si-

multaneously in each submarket i, j. Given the city production technology, a firm’s problem is given

by:

max
mij ,∀i

AjF (m1j , ...,mIj)−
I∑

i=1

wijmij , (5)

subject to the constraint that mij ≥ 0. The first-order condition is: AjFmij (mij) = wij , ∀i.4

Because there is no general solution for the equilibrium allocation in the presence of an unrestricted

technology, we focus on variations of the Constant Elasticity of Substitution (CES) technology, where

the elasticity is allowed to vary across skill types. As a benchmark therefore, we consider the CES

technology:

AjF (m1j , ...,mIj) = Aj

(
I∑

i=1

mγ
ijyi

)
(6)

with γ < 1. In this case the first-order conditions are Ajγm
γ−1
ij yi = wij ,∀i.

Below we will solve the allocation under CES as a special case of the more general technology.

Even without fully solving the system of equations for the equilibrium wages, observation of the first-

order condition reveals that productivity between different skills i in a given city is governed by two

components: (1) the productivity yi of the skilled labor and how fast it increases in i; and (2) the

measure of skills mij employed (wages decrease in the measure employed from the concavity of the

technology). Without loss of generality, we assume that wages are monotonic in the order i.5 This is

consistent with our price-theoretic measure of skill.

We now proceed by introducing varying degrees of complementarities between different skills, start-

ing from the CES technology. This implies the technology now has an elasticity of substitution that is

no longer constant. For tractability, let there be two cities, j ∈ {1, 2} and three skill levels i ∈ {1, 2, 3}.
Consider any subset of the skills, say i, k, between which there is a degree of complementarity λ, and

none with the remaining skill level l. Then the technology can be written as
(
mγ
ijyi +mγ

kjyk

)λ
+mγ

ljyl.

Depending on the subset of skills, we distinguish between the following configurations.

4In what follows, the non-negativity constraint on mij is dropped. This is justified whenever the technology satisfies
the Inada condition that marginal product at zero tends to infinity whenever Aj is positive. This will be the case since
we focus on variations of the CES technology.

5For a given order i, wages may not be monotonic as they depend on the relative supply of skills as well as on yi. If
they are not, we can relabel skills such that the order i corresponds to the order of wages. Alternatively, we can allow
for the possibility that higher skilled workers can perform lower skilled jobs. Workers will drop job type until wages are
non-decreasing. Then the distribution of workers is endogenous, and given this endogenous distribution, all our results go
through. For clarity of the exposition, we will assume that the distribution of skills ensures that wages are monotonic.

10



Definition 1 Consider the following technologies:

I. Extreme-Skill Complementarity. High skill workers are complementary with low skill workers.

AjF (m1,m2,m3) = Aj

[(
mγ

1jy1 +mγ
3jy3

)λ
+mγ

2jy2

]
, (7)

when λ > 1 relative to CES. Instead, skills 1 and 3 are substitutes when λ < 1.

II. Top-Skill Complementarity. High skill workers are complementary with medium skill workers.

AjF (m1,m2,m3) = Aj

[(
mγ

2jy2 +mγ
3jy3

)λ
+mγ

1jy1

]
, (8)

when λ > 1 relative to CES. Instead, skills 2 and 3 are substitutes when λ < 1.

Observe that we could also introduce bottom-skill complementarities. In terms of the distributional

implications, this is equivalent to top-skill substitutabilities, i.e., technology II with λ < 1. There are

therefore 5 distinct configurations of the technology: two for technology I., with complements (λ > 1)

or substitutes (λ < 1), two for technology II. (λ > 1 and λ < 1), and CES (λ = 1).

It is worth pointing out that for our purpose, three skills is the minimal requirement to fully

capture first order stochastic dominance and thick tails. Distinguishing between the two cannot be

achieved with two skills only. At the same time, with a larger number of skills, we do not obtain

qualitatively different results. With one hundred skill types, one can of course analyze the properties of

each percentile, but that does not provide essential additional information about the existence of thick

tails or stochastic dominance. We nonetheless investigate the generality of this setup. In the Online

appendix we report the same properties that we derive below for general technologies with any N skills,

and for more general patterns of gross complementarities. While we can handle a large number of cities,

for analytical purposes, we cannot generalize the setup beyond two city types. That is, we can compute

the equilibrium allocation6, but we cannot find an analytical solution for it. We can however analyze

the setting for any number of cities with types A1 or A2, i.e., for any C1, C2.

We first derive the equilibrium conditions for case I, Extreme-Skill Complementarity. The first-order

6Here it is worth drawing a parallel to the work by Krusel, Ohanian, Rios-Rull and Violante (2000). They compute
an infinite (or long finite horizon) economy with intertemporal prices. The parallel to their dynamic economy is our cross
section of cities with spatial prices.
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conditions are for each j and all skill types i, respectively:

λAj

[
mγ

1jy1 +mγ
3jy3

]λ−1
γmγ−1

1j y1 − w1j = 0 (9)

γAjm
γ−1
2j y2 − w2j = 0 (10)

λAj

[
mγ

1jy1 +mγ
3jy3

]λ−1
γmγ−1

3j y3 − w3j = 0 (11)

Using labor mobility, we can write the wage ratio in terms of the house price ratio for all i, wi2
wi1

=(
p2
p1

)α
and equate the first-order condition in both cities for a given skill, for example for i = 1:

A1 [mγ
31y3 +mγ

11y1]
λ−1

mγ−1
11 =

(
p1
p2

)α
A2 [mγ

32y3 +mγ
12y1]

λ−1
mγ−1

12 (12)

Using market clearing, m12 = M1
C2
− C1

C2
m11 in the local labor market, we can solve for the first-order

conditions for each skill to obtain the equilibrium quantities:

m11 =

[(
p1
p2

)α
A2
A1

] 1
λγ−1 M1

C2

1 + C1
C2

[(
p1
p2

)α
A2
A1

] 1
λγ−1

, m21 =

[(
p1
p2

)α
A2
A1

] 1
γ−1 M2

C2

1 + C1
C2

[(
p1
p2

)α
A2
A1

] 1
γ−1

, m31 =

[(
p1
p2

)α
A2
A1

] 1
λγ−1 M3

C2

1 + C1
C2

[(
p1
p2

)α
A2
A1

] 1
λγ−1

,(13)

and likewise in city 2.

So far we have consumer optimization for consumption and housing, the location choice by the

worker, and firm optimization given wages. The next step is to allow for market clearing in the housing

market given land prices. The system is static and solved simultaneously, which is reported in the

Appendix. In what follows, we assume Hj = H for all cities j. Below, we will discuss the implications

where this simplifying assumption has bite.

The Main Theoretical Results. First we establish the relation between TFP and city size. Denote by Sj

the size of city j where Sj =
∑I

i=1Cjmij . When cities have the same amount of land, we can establish

the following result.

Theorem 1 City Size and TFP. Let A1 > A2 and λγ < 1, γ < 1. Then the more productive city is

larger, S1 > S2.

Proof. In Appendix.

We establish this result for cities with an identical supply of land. Clearly, the supply of land is

important in our model since in a city with an extremely small geographical area, labor demand would

drive up housing prices all else equal. This may therefore make it more expensive to live in even if the

12



productivity is lower. Because in our empirical application we consider large metropolitan areas (NY

city for example includes large parts of New Jersey and Connecticut), we believe that this assumption

does not lead to much loss of generality.7

We now establish the main theorem characterizing the skill distribution across firms. We already

know that more productive cities are larger, but this does not necessarily mean that the distribution of

skills in larger cities differs from that in smaller cities. In fact, it depends on the technology.

Theorem 2 Extreme-Skill Complementarity and thick tails. Given A1 > A2, λ > 1 and λγ < 1, the

skill distribution in the larger city has thicker tails.

Proof. In Appendix.

Two corollaries immediately follow from the main theorem.

Corollary 1 CES technology. If λ = 1 and γ < 1, then the skill distribution across cities is identical.

Under CES technology, cities have identical skill compositions. This is due to the homotheticity

of CES technology: the marginal rate of technical substitution is proportional to total employment,

and, as a result, firms in different cities and with different technologies will employ different skills in

the same proportions. The proof of the result follows immediately from setting λ = 1 in the proof of

Theorem 2. Even though the city skill distribution under CES technology is the same across cities, the

more productive city will be larger. This follows from Theorem 1.

The second Corollary establishes the mirror-image result under extreme-skill substitutability.

Corollary 2 Extreme-Skill Substitutability and Thin Tails. Given A1 > A2, λ < 1 and λγ < 1, the

skill distribution in the larger city has thinner tails.

These two corollaries can help build intuition for the result in Theorem 2. Consider first CES as a

benchmark. Homotheticity implies that even though the level of employment differs across skills, firms

will always choose to hire different skills in exactly the same proportions for a given wage ratio. Since

housing prices affect all skills within a city in the same way, the wage ratio is unaffected.

7In fact, the equal supply of housing condition is only sufficient for the proof, but not necessary. However, our model
does not address the important issue of within-city geographical heterogeneity, as analyzed for example in Lucas and
Rossi-Hansberg (2002). In our application, all heterogeneity is absorbed in the pricing index by means of the hedonic
regression. In Section 6.1, we empirically analyze the implications of within city sorting and find no qualitative impact
on the results. This is consistent with recent work by Fu and Ross (2010), who find little evidence of sorting within
metropolitan areas based on agglomeration.
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Instead with extreme-skill complementarity, the marginal product of both the low and the high-

skilled workers is higher than for medium skills, thus breaking the homotheticity. Given the com-

plementarity between TFP Aj and the skill aggregator, the marginal impact on productivity of the

extreme skills will now be disproportionately higher in larger than in smaller cities. This induces the

relative increase in demand for extreme skills. Observe that this cannot be offset by higher housing

prices because these are determined by real wage equalization at all skill levels, including the medium

skilled. The higher real wages for low and high-skilled workers in large cities will attract those skill

types into the large cities driving down nominal wages until real wages are equalized. This in-migration

of low and high-skilled workers leads to the thick tails in the large cities.

Top-Skill Complementarity. Now consider the technology AjF (m1,m2,m3)

= Aj

[(
mγ

2jy2 +mγ
3jy3

)λ
+mγ

1jy1

]
. Without going through the detailed analysis in the text, we obtain

the equivalent to Theorem 2 above (Theorem 1 readily extends as well) :

Theorem 3 Top-Skill Complementarity and First Order Stochastic Dominance. Given A1 > A2, λ > 1

and λγ < 1, the skill distribution in the larger city first-order stochastically dominates.

Proof. In Appendix.

And the corollary establishing the mirror-image result under extreme-skill substitutability.

Corollary 3 Top-Skill Substitutability and First Order Stochastic Dominance. Given A1 > A2, λ < 1

and λγ < 1, the skill distribution in the larger city is first-order stochastically dominated.

Under top-skill complementarity, the highest skilled are complements with the next highest skill

types, thus generating disproportionately higher output in larger cities. This complementarity breaks

the homotheticity property, and leads to disproportionate demand in larger cities. Free mobility and

real wage equalization across cities implies that the distribution in the larger city has disproportionately

more of the top skill types. This induces first order stochastic dominance.

In Theorems 2 and 3 we identify a mechanism of skill complementarities in the production tech-

nology that generates a systematic pattern in the skill distribution. There is exactly one distribution

pattern that corresponds to each of the 5 technology patterns (extreme-skill and top-skill, each with

complements or substitutes, and CES). From the systematic pattern of thick tails in the distribution in

large cities that we observe below, we can qualitatively deduce that this is due to the complementarities

between extreme skills. As in the macro literature on differential complementarities (most notably

Krusell, Ohanian, Violante and Rios-Rull, 2000), we obtain information about the technology from the
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observed equilibrium distribution. We believe that the theoretical link between the complementarities

and the distribution is novel. Moreover, from a theoretical viewpoint, we are able to explicitly analyze

a tractable matching problem à la Kelso and Crawford (1982) with complementarities (peer effects)

that are applied in a concrete labor market setting. Thus far, only general properties such as existence

rather than explicit characterizations have been analyzed in these models.

We have chosen to model city difference by means of exogenously given TFP differences. In reality,

there are reasons why the productivity of cities is endogenous. We report a model with endogenous

agglomeration externalities in the Additional Material Section, available online. The main finding is

that agglomeration externalities can lead to asymmetric equilibria with cities of different sizes, even

if they are ex ante identical. This occurs provided the external effect is strong enough. We further

show that once cities are heterogeneous, the thick tail results extend to this setting with endogenous

externalities. And in addition to these production externalities, there could be consumption externalities

from the presence of amenities. Unfortunately in our analysis, because we identify unobservable skills

from wages, we cannot jointly determine skills and amenities from the same wages. While there is

no doubt that amenities matter for citizens’ location decisions, based on evidence from Albouy (2008)

there seems to be no systematic relation to city size, unlike the relation of skill composition to city size

as we derive in our results.

In Appendix C, we also discuss an alternative explanation, namely that thick tails are generated

by the combination of top-skill complementarity and the preference for services in a model with home

production and a market for services. The intuition behind this model generating thick tails is simple:

Top-skill complementarity would attract highly skilled workers to large cities, while the demand for

services generated by these highly paid workers would attract low-skill workers to large cities as well.

However, as we show in the appendix, under reasonable parameter values, this set up would only

generate thick tails under very specific conditions. First, the income share of services must be almost as

high as the share on housing expenses. Second, the entry cost in the service sector must be sufficiently

high. Finally, the top-skill complementarity must be not too strong. These conditions are very specific

and it is not at all clear that they are supported by the facts.

Finally, we also report some further results on housing and consumption expenditure. It is immediate

from our model that in large cities, citizens will spend more on housing, yet they will consume less of

it.

Proposition 1 Consider a general technology F . For a given skill i, expenditure on housing pjh
?
ij is

higher in larger cities. The size of houses h?ij in larger cities is smaller.
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Proof. From the consumer’s problem, we have: pjhij = αwij . Since wi1 > wi2, we must have

p1hi1 > p2hi2, ∀i. Similarly, from the same equality in the consumer’s problem, we have hij = αwij/pj .

Since:
wi1
p1

<
wi2
p2

(14)

it follows that hi1 < hi2.

Then given homothetic preferences for consumption, it immediately follows that:

Corollary 4 Expenditure on the consumption good is higher in larger cities.

Our model predicts that expenditure on both housing and consumption is higher in larger cities,

though the equilibrium quantity of housing h?ij is lower. As cities become larger (or as the difference

in TFP increases), at all skill levels total income increases and therefore total expenditure increases.

Because housing prices increase as well, there will be substitution away from housing to the consumption

good. As a result, inequality in consumption expenditure will increase.

5 The Empirical Evidence of Thick Tails

We use the one-to-one relation between skills and equilibrium utility to back out the skill distribution

from observable variables. The worker’s indirect utility in equilibrium is independent of the city, given

perfect mobility, and assuming Cobb-Douglas preferences, it satisfies

Ui = αα (1− α)1−α
wij
pαj

(15)

where we need to observe the distribution of wages wij by city j, the housing price level pj by city and

the budget share of housing α.

5.1 Data

The analysis is performed at the city level. We define a city as a Core Based Statistical Area (CBSA), the

most comprehensive functional definition of metropolitan areas published by the Office of Management

and Budget (OMB) in 2000. See Table 3 in the appendix for the list of the largest and smallest cities

and their 2009 population.

We use wage data from the Current Population Survey (CPS) for the year 2009. We observe weekly

pre-tax earnings for 76,821 full-time workers in 254 U.S. metropolitan areas. CPS wages are top-coded
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Figure 2: Quantile regression of wage on population. A. 5 selected quantiles; B. Estimated slope for all
quantiles.

at around $150,000 which we will take into account in the statistical analysis. In the data appendix,

we provide detailed information on data source, sample restrictions and variables.

Local housing price levels are estimated using the American Community Survey (ACS) for 2009. We

observe monthly rents for 273,761 housing units in 533 CBSAs. The ACS reports the number of rooms,

the age of the structure, and the number of units in the structure. With these data we estimate city

specific housing price indices using hedonic regressions. See the appendix for details and a theoretical

motivation of this approach.8

5.2 Wage Distribution

Figure 1.A in the introduction shows the distribution of weekly wages for full-time earners both in

cities with a population of more than 2.5 million and in cities with a population between 100,000 and

1 million. We clearly see that wages in larger cities are higher and that the top tail of the distribution

is substantially fatter in large cities.9 A simple t-test shows that wages in large cities are 13.3% higher

than in small ones (t = 27.8, p < 0.01). Controlling for right censoring from top-coding and weights in

a censored (tobit) regression leads to almost exactly the same comparison: ∆ log wage = 13.2% (robust

t = 24.7, p < 0.01). A look at the tails of the two distributions shows that the large cities have a thicker

tail at the top and the small cities at the bottom. The 90th percentile for large cities is 7.56 compared

8In an earlier version of this paper we show that our findings are robust to using other housing price data such as
from the 2000 U.S. Census, the National Association of Realtors or the Council for Community and Economic Research
(C2ER).

9Note that the “bumps” in the top tail for both large and small cities are an artifact of the top-coded nominal wage
data.
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Figure 3: Quantile regression of skills (utility) on population. A. 5 selected quantiles; B. Estimated
slope for all quantiles.

to 7.36 for small cities (∆ = 0.198, se = 0.007, p < 0.01). The 10th percentile for large cities is 5.99

compared to 5.93 for small cities (∆ = 0.065, se = 0.007, p < 0.01).10

The above partitioning of wages into a group of small cities and a group of large cities is arbitrary.

We therefore perform quantile regressions of wages on city population size. Panel A in Figure 2 shows

the estimated regression lines for the 10th, the 25th, the 50th, the 75th and the 90th percentile. Panel

B in Figure 2 shows the slope coefficients for all quantiles. The slopes are all significantly above 0,

which implies that the upper tail of the wage distribution increases with city size while the lower tail

decreases. For the median (50th percentile), for example, the slope is 0.042 (se = 0.002, p < 0.01): a

doubling of city size leads to a 4.2% increase in wages.

5.3 Skill Distribution

Davis and Ortalo-Magné (2007) document that expenditure shares on housing are remarkably constant

across U.S. metropolitan areas with a median expenditure share of 0.24. We use this as our estimate

of α. Together with our estimate for local housing prices pj we can back out the indirect utility uij for

the observed wages using equation (15).

The variation in housing prices is substantial. While wages increase by 4.2% as city size doubles,

housing prices increase by 16.9% for the same change in city size, i.e. a fourfold increase. With the

0.24 expenditure share, this implies that the average cost of living is of a factor 1.1690.24 = 1.038. In

10Percentiles and their difference are estimated in a quantile regression of wages on a dummy variable for large cities.
We use CPS earnings weights and bootstrapped robust standard errors.
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other words, the 4.2% wage gain from living in a larger city is virtually completely absorbed by a 3.8%

disutility increase due to the cost of living.

Figure 1.B in the introduction shows the entire distribution of skills for full-time earners both in

cities with a population of more than 2.5 million and cities with a population between 100,000 and

1 million. In contrast to the wage distribution, the skill distribution in large cities is only marginally

shifted to the right. However, both the upper and the lower tail of the distribution is thicker in the large

cities, thus confirming the consistency with the theoretical prediction of thick tails from extreme-skill

complementarity.11 An explicit look at the tails of the two distributions confirms the the thick tail

prediction in a statistical sense. The 90th percentile for large cities is 6.99 compared to 6.86 for small

cities (∆ = 0.132, se = 0.009, p < 0.01). The 10th percentile for large cities is 5.36 compared to 5.44

for small cities (∆ = −0.074, se = 0.006, p < 0.01). So the large cities have both a significantly lower

10th percentile and a significantly larger 90th percentile, which implies the thick tails.

As with the wage distribution, one could argue that our partitions of cities into small and large ones

is arbitrary. We therefore also run quantile regressions of our implicit skill measure on city population.

Figure 3 visualizes the results of these regressions. It shows that the median (50th percentile) barely

changes with city sizes while the lower percentiles significantly decrease and the upper percentiles

significantly increase. This reiterates our finding that the average of skills does not change systematically

with city size while the variance of skills increases significantly. The quantile regressions also perfectly

account for the top coding in the wage data up to about the 95th percentile.

6 Additional Sources of Heterogeneity

In this section we allow for additional heterogeneity in locations, in individual preferences, and in

prices. We show that our main theoretical results and empirical findings are robust to allowing for

heterogeneity in attractiveness of locations within cities (section 6.1), for non-homothetic household

preferences (section 6.2), and for local price variation of other consumer goods beyond housing (section

6.3).

6.1 Heterogenous Attractiveness of Locations Within Cities

In our analysis, the endogenous choice of housing is a central component. High-skill workers in the

same city consume more housing h than low-skill workers, and at the same time there is substitution

11Note again that the “bumps” in the top tail are due to top coding, see footnote 9. Top codes appear more to the left
for large cities because real wages are deflated with higher housing prices.
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between housing and other consumption goods: same skilled workers consume less housing in large,

expensive cities than in small ones. In order to obtain our wage-based measure of skills, and guided by

the theory, we adjust wages by a city-wide housing price index, which measures the unit cost (say, per

square foot) of housing. To adjust for different choices of quantities, we have obtained that unit cost by

means of a hedonic regression that conditions on observables, such as the number of rooms, bathrooms,

etc. Implicit in this specification is the assumption that all neighborhoods are equally attractive, and

citizens with different incomes will therefore share the same neighborhoods, albeit in houses of different

sizes.

In reality though, not all locations within a city are equally attractive. The desirability of neigh-

borhoods depends on factors such as closeness to work, cultural events, restaurants, shopping outlets

and recreational opportunities, as well as on access to good schools and other public goods, or simply

on its socio-economic status. In spatial equilibrium, more attractive locations will have higher housing

prices. In the absence of within-city sorting – which will be discussed further down – all households are

indifferent between all locations within the city in spatial equilibrium. A simple theoretical framework

of this mechanism is the mono-centric city model where the attractiveness of locations within the city

decreases with distance from the central business district due to commuting costs.12 Because there is

a tradeoff, the housing price now also reflects the attractiveness. The less attractive, the lower the

housing price, even for identical agents. As a result, there is a so-called bid-rent function that increases

with attractiveness. Only in the city center without any commuting, does the price reflect the true cost

of living. Anywhere else, the housing price is too low since it embodies both the cost of living and the

disutility from less local attractiveness.

We operationalize neighborhoods within cities in the data as Public Use Microdata Areas (PUMA),

relatively small areas of around 100,000 inhabitants. We estimate hedonic price indices for all PUMA

areas across the U.S. We then take the average price index of the top 10% PUMA areas per city, i.e.

CBSA. The imputed skill distribution based on this maximal housing price index is reported in Figure

4. Consistent with our earlier results, the thick tails continue to exist. We tend to see a somewhat

bigger tail at the bottom than at the top. Even adjusting for differential attractiveness of locations

within the city, the thick tails result continues to hold.

So far, the logic with differential attractiveness of locations is for identical agents. In fact, housing

prices adjust to equalize the difference in attractiveness, and all agents are indifferent where to locate

within the city. When in addition, agents are heterogeneous – as in our model in incomes – and different

12For an overview of the different variants of the mono-centric city model and a full characterization, see Fujita (1989).
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Figure 4: Skills based on the average housing price index in the top 10% neighborhoods (PUMA) of
a city; wage data from the 2009 Current Population Survey (CPS). A. Skill distribution for small and
large cities. B. Slopes in quantile regressions of log utility on log population.

income agents value the tradeoff between local attractiveness and housing price differently, then there

will be sorting within the city. If the opportunity cost of attractiveness is complementary with income,

then the richest citizens will sort into the most attractive neighborhoods (e.g. Manhattan in New York

or Bloomfield Hills in Detroit). Now there is a bid-rent function for each household type that is only

observed where a citizen type actually lives: at the most attractive location for the highest income types,

in intermediate attractive locations for the middle income types and at the least attractive locations for

the lowest income types. In the case of perfect sorting, each type would live in a dedicated neighborhood

between intersections of the bid-rent functions. The relevant price for utility comparisons across cities

would be the bid-rent at the most attractive location, but that is unobserved except for the highest

income types in the most attractive locations. The observed local housing prices for less attractive

neighborhoods is then a lower bound of the relevant price since the observed price incorporates the cost

of commuting.

We estimate this lower bound as the hedonic price index of the PUMA area where the observed

worker lives. Unfortunately, the wage data from the CPS do not identify the PUMA area of the worker.

We therefore use wages from the 2009 American Community Survey (ACS) for this analysis, i.e. wage

data from the same source as the price data. We then assign each worker in the ACS the housing price

of the PUMA area where he lives. In Figure 5, we first reproduce the basic findings from Figure 1. As

with CPS data, the ACS data shows first order stochastic dominance in wages and thick tails in skills,
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Figure 6: Skills based on the housing price in the neighborhood of residence; wage data from the
2009 American Community Survey (ACS). A. Skill distribution for small and large cities. B. Slopes in
quantile regressions of log utility on log population.

though the effect on the lower tail is less pronounced.13

In Figure 6, we report the distribution of skills based on the price of the PUMA area where the

worker lives. Quite remarkably, even in the presence of this biased price index, the thick tails continue

to exist. It is not surprising that the lower tail difference is thinner, given that our measure is biased

downwards, but it is still significant. More importantly, because this housing price index is a lower

13The CPS is generally considered the more reliable data source for wage data as the survey is performed personally by
phone while the ACS questionnaires are mailed. We therefore use our initial results in Figure 1 as the baseline.
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bound, the actual tail difference must be thicker.

We interpret the exercise in this section as one in which we put bounds on the tails. The neighbor-

hood (PUMA) price index is the lower bound and shifts the distribution too little to the left, resulting

in a small lower tail effect. The maximum price index is the upper bound and shifts the distribution

too much to the left, generating a big lower tail effect but hardly any upper tail effect. The relevant

price index, and hence the distributions, is somewhere in between.

We conclude that allowing for differential attractiveness and ensueing within-city sorting, the thick

tail result continues to hold. That does not mean that there is no within city sorting, quite to the

contrary. Figure 7 shows the average housing prices and average log wages across neighborhoods

(PUMA areas) for 5 metro areas. The fact that there is a strong correlation between wages and housing

prices is indicative of such within city sorting.
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Figure 9: Expenditure Share (A) and Skill distribution (B) using Stone-Geary preferences, α̂ = 0.224,
ĥ = 27.7.

A closer look at the data reveals that the price difference across different neighborhoods within a

city is smaller than the price variation across cities: the standard deviation of the puma housing price

index is 0.36 across and within all CBSAs; the standard deviation between CBSAs is 0.33 while it is

only 0.25 within CBSAs. This is illustrated in Figure 8 with the price variation across PUMA areas

in two cities, New York and Detroit. Among the most expensive residential areas in New York, for

example, are the Upper East Side in Manhattan and East Meadow on Long Island. The least expensive

areas are East Harlem in Manhattan and the Bronx. Yet, few of the cheapest areas in New York are

less expensive (less dark on the map) than the most expensive areas in Detroit. The important point

to take away from this is that the housing price differences across cities is relatively large.

6.2 Non-homothetic Household Preferences

So far we have assumed homothetic (Cobb-Douglas) preferences over housing and consumption. Moti-

vated by the empirical finding of Davis and Ortalo-Magné (2009) that housing expenditure is on average

remarkably constant across different cities, we have used their estimated expenditure share on housing

of α̂ = 0.24. Yet, even if the average expenditure share of housing is constant across cities of different

size, there may well be variation across individuals of different incomes. As a result, the Engel curve

that relates expenditure to income is no longer linear as it is under Cobb-Douglas. Below we show that

there is indeed evidence in our data of a concave Engel curve: the rich spend proportionally less on

housing.

Non-homothetic preferences have important consequences for both our theoretical model and our
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empirical strategy. First, decreasing housing expenditure shares with respect to income introduce an

alternative mechanism for sorting across cities as high-skill workers care less about local housing prices

than low-skill workers.14 Second, our price-based skill measure derived from the homothetic Cobb-

Douglas preferences needs to be adjusted.

It is straightforward to introduce non-homothetic preferences into our theoretical framework. We

follow the most common way in the literature and model it by means of Stone-Geary preferences. They

can be written as u(c, h) = c1−α(h − h)α where h is the subsistence level of housing, and housing

consumption is restricted to h ≥ h. Given housing prices p and the budget constraint c + ph ≤ w,

from the first order conditions optimal expenditures on housing and consumption can be written as

ph? = αw + (1− α)ph and c∗ = (1− α)(w − ph), with the indirect utility given by

u(c?, h?) = (1− α)1−αααp1−α
(
w

p
− h
)
. (16)

Assuming the CES production technology and Stone-Geary preferences with h > 0, our model predicts

FOSD of the skill distribution in large cities in simulations.15 Hence, non-homothetic preferences do

not generate thick tails per se. But allowing for extreme-skill complementarities in addition, our model

still predicts thick tails, for h positive but small. In the next paragraph we therefore explore which

mechanism prevails empirically.

When housing expenditure varies by income, the utility and therefore our measure of skill must be

adjusted. Assuming Stone-Geary preferences, the expenditure share on housing is a linear function in

the inverse of wages: ph?

w = α+ (1− α)h pw . This give us a regression of the housing expenditure share

si on pj/wi:

si = α+ β
pj
wi

+ εi (17)

where si =
pjh

?
i

wi
. The parameter α is estimated directly while the parameter h is estimated as ĥ =

β̂/(1− α̂).

We use individual data on expenditure shares (see the data appendix for details) from the Consumer

Expenditure Survey (CEX) to estimate the two parameters α and h. We obtain α̂ = 0.224 (s.e.=

0.005), and ĥ = 27.7 (3.8). The implied expenditures shares vary considerably, from 35% for low-

income households to 22% for high-income households as graphed in Figure 9.A. Figure 9.A. also shows

that the functional form assumed by Stone-Geary fits the data astonishingly well. Yet, the varying

expenditure share and the resulting non-linearity of the Engel curve do not substantially alter the

14See e.g. Schmidheiny (2006) who studies within-city sorting from assuming non-homothetic (Stone-Geary) preferences.
15Matlab code for the simulations can be obtained on request.
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Figure 10: Skill distribution using ACCRA cost-of-living index, adjusting for variation in prices for all
goods. A. Skill distribution for small and large cities. B. Slopes in quantile regressions of log utility on
log population.

emergence of thick tails. Figure 9.B. shows the resulting skill distribution, which has very similar

properties to those under Cobb-Douglas preferences. If anything, the thick tail differences in both the

lower and the upper tail are slightly more pronounced. This shows that our evidence for extreme-skill

complementarities still holds even after accounting for non-homothetic preferences.

6.3 Variation in Consumption Prices

Local prices are crucial for our strategy to back out skills from observed nominal wages. In this section

we look not only at local housing prices but also at local prices of consumption goods. It may well be that

consumption prices in large cities are systematically higher than in smaller cities, thus adding further

to the real cost of living in large cities. We use the ACCRA Cost of Living Index from C2ER (The

Council for Community and Economic Research). See the data appendix for details. The variation in

consumption prices is substantially lower than in housing prices (standard deviation across metropolitan

areas is 30.1 for the housing prices index compared to 9.1 for grocery items, 14.2 for utilities, 5.6 for

transport, 8.2 for health and 4.6 for services; all price indices are normalized to mean 100).

Figure 10 plots the distribution of skills for large and small cities. The measure is wages adjusted

for local price differences in all goods categories reported in the ACCRA data, including housing,

consumption goods and services.16 When including the price index for all consumption and housing,

16ACCRA reports a composite price index which is the weighted average of the six sub-indices, i.e. Pcomposite =
αgroceryPgrocery + ... + αservicesPservices, where the αs are the expenditure shares of the six categories summing up
to 1. We do not use this aggregation as it is inconsistent with Cobb-Douglas utility. Instead, we use Pcomposite =

(Pgrocery)αgrocery · ... · (Pservices)
αservices . The implied skills are calculated as Ui = wij/(Pgrocery,j

0.1249 · Phousing,j
0.2918 ·
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we find that the left tail difference becomes more pronounced while the right tail difference is less so.

This indicates that consumption prices are systematically higher in larger cities, but to a limited extent,

since this effect does not annihilate the existence of fat tails. Note again, that the the third crossing at

the very top is an artefact of the top-coding (see footnote 11).

These findings should be interpreted with some caution and a few caveats. First, the quality of

the ACCRA data is dubious.17 Second, even within a given location, there could be variation in

consumption prices paid by skill level. For example, due to different search intensity, the existence of

locally segregated markets, etc., the low-skilled may end up paying different prices for similar goods

within the same city. Using scanner data on household purchases, Broda, Leibtag and Weinstein (2009)

find that the poor pay less. Third, data consisting of price indexes and price surveys are likely to not

fully account for quality and diversity differences. Due to their size, large cities have more variety on

offer and the quality of goods may differ substantially across different cities. Even if a consumer pays

higher prices, a price index incorporating the diversity and quality on offer will be lower.18 In addition,

ACCRA puts more weight on housing than we do in our baseline result (see details in footnote 16).

Using our budget share, the skill distribution of large cities would be shifted less to the left, the lower

tail difference would be less pronounced and hence more in line with our baseline results. We therefore

see the results in Figure 10 as a very conservative upper bound of how the inclusion of consumption

price differentials affects our initial findings.

7 Decomposing Observable and Unobservable Skills

Our measure of skills is a price based measure, calculated as the residual of wages after adjusting for

housing prices. As such, it is a comprehensive measure that encompasses both observed and unobserved

characteristics. In this section we verify the robustness of the spatial sorting result using observed, direct

measures of skill. Not only does it allow us to decompose the contribution of observed and unobserved

characteristics, it also makes explicit if and why the results with our comprehensive measure are different

from a long tradition of previous literature. We show that our thick tail result also holds using directly

Putilities,j
0.0998 · Ptransport,j

0.111 · Phealth,j
0.0406 · Pservices,j

0.3319
). The exponents are budget shares taken from the

ACCRA Cost of Living Index Manual, version November 2009 (current versions of the manual are available online at
http://www.coli.org/surveyforms/colimanual.pdf). The ACCRA values differ from the ones we use for the baseline results
of this paper. Based on Davis and Ortalo-Magné (2009), we use a budget share of 0.24 for housing rather than the 0.29
used by ACCRA.

17Koo et al. (2000) discuss several problems of the ACCRA data.
18This also appears to be an issue when studying price differences across different countries. Comparing the results of

price differences across borders, Broda and Weinstein (2008) find that significant price differences that are found using
price indexes are not replicated once they use US and Canadian barcode data. Their work is supportive of simple pricing
models where the degree of market segmentation across the border is similar to that within borders.
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observed measures of skill. We also contribute to the debate on the role of non-cognitive skills and how

much they contribute to wage determination. Here, we focus explicitly on the impact of non-cognitive

skills across labor markets of different size.

In the first instance (section 7.1), we use years of schooling, occupation and industry as direct

measures of skills instead of our wage based measure. We then investigate the role of mobility and

migration that is systematic by nationality (7.2) and also whether there are any location decisions

determined by age over the life cycle (7.3). Finally, we quantify the impact of those observables

simultaneously (7.4) and decompose the tails into an explained and an unexplained component.

7.1 Observed Measures of Skills: Education, Occupation and Industry

As a first robustness check and as external validation, we compare our implicit skill distribution with

that of educational attainment. The top-left panel in Figure 11 shows the distribution of highest

educational attainment for the same CPS population as our wage data, where workers are grouped in 5

education categories. The same pattern as with our implicit measure arises: both the highest and the

lowest skilled workers are disproportionately more frequent in larger cities (population above 2.5M) than

in smaller ones (population between 100,000 and 1M). What is most striking about this observation

is that the thick tails in the distribution of educational attainment are obtained independently of how

we constructed our measure of skills before. Here, no theory is needed and the measure of skills is

determined exogenously. Using observable, self-reported measures of skills we find a distribution with

thicker tails in larger cities, both in the aggregate and at the individual city level.

In principle, individual skills can be decomposed into an observed component, e.g. education, and

an unobserved component, e.g. ability. We already know that the observed component indeed exhibits

thick tails. To get to the unobserved component, we regress our implicit skill measure (log utility)

on dummy variables for all 16 observed education categories.19 The residual of this regression is the

“residual skill” after controlling for observed education. A high value means that the worker is more

skilled relative to other workers with the same education. This can be a very successful lawyer or a

high-school-dropout-become-succesful-entrepreneur.

19We estimate censored (tobit) regression, accounting for the top-coding of the wage data. We regress log(uij) on a
constant and a set of dummy variables for education with basic education as reference group. This dummy variable
regression is fully consistent with our theoretical model. Recall that the wage ratio of skill type i relative to skill type 1
is constant across cities, log(wij/w1j) = log(wij) − log(w1j) = βi and therefore the ratio of log utility, too, log(uij/u1j) =
log((wij/p

α
j )/(w1j/p

α
j )) = log(wij/w1j) = βi. The log utility of skill type i can therefore be expressed as log(uij) =

β1 +β2 ∗d2 + ...+βi ∗di+ ... where β1 is log(uij) = log(ui1) = log(ui) of the reference skill type 1, which is constant across
cities j. Notice, that regressing log(wage) on a constant and dummy variables for education would not be consistent with
our theoretical model as the constant, log(w1j), would be city specific. The usual wage regression therefore needs city
fixed effects, which we do not need.
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Figure 11: Observed and residual skills of full-time wage earners in 2009 CPS for small and large cities.

The top-right panel in Figure 11 shows the resulting distribution of residual skills for large and small

cities. We see that the thick tails persist for the unobserved component, and are more pronounced at
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the bottom than at the top. Large cities seem to host more of the relatively low skilled even after

controlling for education category. Taken together, these two pieces of evidence mean that large cities

attract relatively more of the best educated and more of the least educated workers. In addition, they

attract the more talented, given their education level. We also see that there is an asymmetry between

the upper and the lower tail. This indicates that the sorting of the most talented workers is based more

on the observed component of skills (education) while the sorting of the least talented is based more on

the unobserved component. A finding that we will reiterate in the next paragraph, where we condition

on occupations.

Like education, occupation can be interpreted as a direct measure of skills. More highly skilled

individuals are likely to be employed in higher ranked occupations. If we can find a way to rank

occupations, it can give us some insights into the sorting of workers based on this observed characteristic.

The current population survey contains the occupation of workers, in addition to wages and education.

This occupational classification has been used as an alternative direct measure of skills before (see

e.g., Autor, Levy, Murnane, 2003). The CPS reports occupations in 498 categories from the 2000

Standard Occupational Classification by the U.S. Bureau of Labor Statistics. We use country-wide

median wages by occupation category as a proxy of their skill requirement (this approach is used in

e.g. Goos, Manning, Salomons, 2009). We then group the 498 occupation categories into 5 groups:

group 1 includes the lowest paid occupations covering 5% of all workers, group 2 the next 20%, the

middle group 3 covers 50% of workers, group 4 the next 20%, and the high skill group 5 includes the

highest paid occupations covering 5% of all workers. The low skill group 1 includes occupations such

as dishwashers, waiters, and child care workers; the middle group 3 occupations like secretaries and

truck drivers; the high skill group includes chief executives, surgeons and lawyers. The middle-left

panel in Figure 11 shows the distribution of these 5 occupation groups separately for small cities and

for large cities. It shows that workers in the highest paid occupations locate relatively more often to

large cities while the middle occupations locate more to small cities. The lowest paid occupations are

equally frequent in small and large cities. Note, that already the fact that the lowest group is not more

frequent in small cities is a contradiction of the first order stochastic dominance observed in nominal

wages. This direct evidence of thick tails is very similar to the result we found for education groups.

The effect on the lower tail is less pronounced than for the upper tail.

As with the analysis of education, we next decompose skills into a component observed through

occupations and the residual unobserved component. We regress our skill measure (log utility) on
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dummy variables for all 498 occupation categories.20 The residual of this regression is the “residual

skill” after controlling for observed occupation. The middle-right panel in Figure 11 shows the resulting

distribution of residual skills for large and small cities. We see that the thick tails persist for the

unobserved component. In particular, large cities seems to host more of the relatively low-skilled in

each occupation than small cities. As a result, large cities attract relatively more workers in the highest

paid occupations and more in the lowest paid occupations. In addition, they attract the more talented,

given their occupation. We also see that the sorting of the most talented workers is based more on the

observed component of skills (occupation) while the sorting of the least talented is based more on the

unobserved component. A finding that we already made using education as a direct measure.

A potential threat to our identification of skills is the different industrial composition of cities.

Wages systematically differ across industries and the mobility of workers varies across sectors (see for

example Davis, Faberman and Haltiwanger, 2006). At the same time, industrial composition changes

across cities: some cities specialize in particular industries and other cities have a diverse industrial mix.

If industry composition varies systematically with city size, this could be an alternative explanation for

our finding of thick tails. We therefore seek to control for the wage component related to the industry.

As in the analysis of occupations, we first rank the 262 industries by country-wide median wages and

group them into 5 groups: group 1 includes the lowest paid industries covering 5% of all workers,

group 2 the next 20%, the middle group 3 covers 50% of workers, group 4 the next 20%, and the high

skill group 5 includes the highest paid industries covering 5% of all workers. The middle-left panel in

Figure 11 shows the distribution of these 5 industry groups separately for small cities and for large

cities. We see indeed that large cities attract more workers from industries that pay the highest wages

as well as more workers from industries that pay the lowest wages.

As we did with education and occupation, we decompose our implicit skill measure into a component

observed through occupations and the residual unobserved component. We regress our skill measure

(log utility) on dummy variables for all 262 4-digit industries.21 The residual of this regression is the

“residual skill” after controlling for the industry the worker operates in. The bottom-right panel in

Figure 11 shows the resulting distribution of residual skills for large and small cities. We see substantial

thick tails both on the upper and the lower end when controlling for industries. This shows that while

the industrial composition may vary across cities, it does not do so systematically across small and

large cities.

20We estimate censored (tobit) regression accounting for the top-coding of the wage data.
21We estimate a censored (tobit) regression, accounting for the top-coding of the wage data.
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7.2 Migration

Casual observation suggests that large cities tend to have a disproportionate representation of low-

skilled immigrant workers. Often kitchen staff in restaurants or construction workers are immigrants

with low skills and incomes. And indeed, while the foreign born are overall a relatively small fraction

of the working population (less than 10%), the data confirms that they are much more likely to locate

in large cities (12% of the work force) than in small cities (5%). Maybe the effect of disproportionate

representation of the low-skilled in large cities is driven by immigration.

In the context of our model it does not matter whether it is low skilled Americans or low-skilled

immigrants who disproportionately locate to large cities. In equilibrium they should be indifferent. Of

course, there is likely to be within-skill heterogeneity (in preferences for example), and some low-skilled

workers will strictly prefer to locate to either large or small cities. Thus it may well be the case that

migrants have certain benefits from locating to large cities. For example networks (see Munshi, 2003)

play an important role in the location decision of migrants, and if only migrants have that benefit, at

a competitively set wage, migrants will strictly prefer to locate in the city that offers the same utility

plus the network benefit. Alternatively, migrants may locate in large cities due to limited information

about smaller cities.

Consider this logic with preference bias in the context of our baseline model. There are three skill

types (low, middle, high) and two cities (small and large). Assume now that all migrants are low skilled

and have a preference for the large city, i.e. they get additional utility from living there. Suppose that

in an equilibrium without migrant preferences, the number of low skilled workers in the large city is

m11. Now with the migrants’ preference for large cities, all migrants will want to live in the large city.

As long as the number of migrants is below m11, the general equilibrium will not change at all. All low

skilled migrants will live in the large city, some low skilled natives will also live in the large city and all

the others in the small city. The native workers remains the marginal worker and are still indifferent

between large and small city. Migrants, however, strictly prefer the large city and are not indifferent.

The resulting equilibrium skill distribution is not be affected by migrants. Just looking at migrants, we

would see a (very much) thicker lower tail in large cities. Just looking at natives we would see a less

thicker (if not thinner) lower tail in big cities. The important implication is that even if we observed

those location biases, it would not affect the aggregate predictions.

In general, as long as the migrants – or any subgroup of the population for that matter – of a

particular skill and with a taste for a particular city do not outnumber the equilibrium number of

workers of that skill in that city, our model predictions are unchanged by migrant preferences for large
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Figure 12: Skill distribution for small and large cities. A. Foreign born workers; B. Natives.

cities. The fact that we observe a substantial number of natives of all skill types (including the very

low skilled) in all cities, provides empirical support that the native workers are the indifferent marginal

workers for all skill types.

Empirically, we even find no evidence of a systematic bias in the location decision of the migrants.

To evaluate this, we split the sample up into natives and foreign born workers. Figure 12 reports the

plot of both distributions. Not surprisingly, the implied skill distribution for the foreign born is more

skewed to the left than that of the natives. We also see that the distribution of foreign born workers

has thick tails, both for the low- and the high-skilled. The latter is maybe most surprising: not only do

the low-skilled foreign born disproportionately migrate to large cities, so do the high-skilled migrants.

Most importantly, even after subtracting all migrants, the distribution of natives has thicker tails in

large cities. The thick tails are therefore not driven by selective migration decisions by non-natives.

7.3 Age: Location Decisions over the Life Cycle

One plausible mechanism, and different from the technological one we propose, is that the spatial

sorting pattern is driven by location decisions that vary over the life cycle. We distinguish between

three candidate mechanisms in the presence of human capital accumulation. First, age dependent

preferences could lead to variation in the location decision over the life cycle. Young people prefer

the excitement of the city, while older people settle for a quiet life. Second, family and marriage

considerations determine whether to live in an urban or rural environment, for example as in Gautier,

Svarer and Teulings (2009). Singles find a better marriage market in the big city, while those married

33



0
.2

.4
.6

.8
pd

f

5 6 7
skill (log utility), 20-29 year old

population < 1m > 2.5m
10th percentile: pop < 1m = 5.32, pop > 2.5m = 5.27, diff = -0.051*** (0.012)
90th percentile: pop < 1m = 6.48, pop > 2.5m = 6.57, diff = 0.090*** (0.018)

0
.2

.4
.6

.8
pd

f

5 6 7
skill (log utility), 30-39 year old

population < 1m > 2.5m
10th percentile: pop < 1m = 5.48, pop > 2.5m = 5.38, diff = -0.092*** (0.014)
90th percentile: pop < 1m = 6.84, pop > 2.5m = 6.97, diff = 0.131*** (0.019)

0
.2

.4
.6

.8
pd

f

5 6 7
skill (log utility), 40-49 year old

population < 1m > 2.5m
10th percentile: pop < 1m = 5.51, pop > 2.5m = 5.45, diff = -0.057*** (0.014)
90th percentile: pop < 1m = 6.95, pop > 2.5m = 7.11, diff = 0.158*** (0.018)

0
.2

.4
.6

.8
pd

f

5 6 7
skill (log utility), 50-59 year old

population < 1m > 2.5m
10th percentile: pop < 1m = 5.53, pop > 2.5m = 5.45, diff = -0.073*** (0.015)
90th percentile: pop < 1m = 6.99, pop > 2.5m = 7.09, diff = 0.101*** (0.019)

Figure 13: Skill distribution for small and large cities by age group.

with children look for green spaces and schools for the children. Third, labor market learning and

human capital accumulation may affect the location decision (as in Puga and De la Roca, 2012). Young

workers try their luck in the big city, starting off at low salaries. At a later age, those who have learned

(or are lucky) to be very productive stay and earn high salaries, while the unlucky who have learned

little and have added limited human capital return to their small town at moderate salaries.

Each of these three mechanism induces a systematic spatial sorting pattern and as a result a sys-

tematic skill distribution for the entire cross section. This can lead to thick tails or first order stochastic

dominance. Most importantly, if it is life cycle driven, it will differ for different age groups. For exam-

ple, there may be stochastic dominance of the small cities for the young and stochastic dominance of

the large cities for the old, thus leading to thick tails overall. For that purpose, we split the sample into

four different age cohorts and investigate the tail properties of the skill distribution for each cohort as

reported in Figure 13. For each of the cohorts, there are thick tails, and the statistics show they are
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highly significant. While we obviously cannot rule out that any of the mechanisms mentioned above

is at work, this evidence lends support to the fact that these mechanisms are not sufficiently strong to

undo the impact of the extreme-skill complementarities.

7.4 Decomposition by Education, Occupation, Industry and Individual Attributes

This section seeks to explain the differences in the tails of the skill distribution simultanously by all

three variables in section 7.1 (education, occupation, industry) plus individual attributes (sex, age, race,

foreign birth). In regression models explaining the mean, this can easily be done by the Oaxaca-Blinder

decomposition (Oaxaca, 1973; Blinder, 1973). However, we are interested in explaining differences in

the tails of the skill distribution, which is a much harder task. Fortunately, there is a fast evolving

econometrics literature on the decomposition of entire (wage) distributions (Juhn, Murphy, Pierce,

1993; DiNardo, Fortin, Lemieux, 1996; see Fortin, Lemieux, Firpo, 2011 for a review).

We are using two very recent approaches. The first approach is based on Chernozhukov, Fernández-

Val, Melly (2013). This approach estimates the entire distribution of skills conditional on the observed

covariates for both groups (small and large cities) separately using quantile regressions. They then

integrate the conditional distributions over the covariates to get the predicted marginal distribution of

each group. With this they can predict counterfactual marginal distributions such as the distribution

of skills in the large city, given that it had the same distribution of covariates as the small city. We

refer to the difference between the marginal distribution and the counterfactual distribution as the

“unexplained” difference.22

We summarize the results by reporting the impact on the 10th and 90th percentile. Chernozhukov,

Fernández-Val, Melly (2013) cannot easily decompose the explained difference into different sets of

covariates. We therefore also apply an alternative decomposition proposed by Firpo, Fortin, Lemieux

(2009). Their approach, based on so-called rescaled influence functions (RIF), allows to conveniently

decompose the explained differences in the quantiles into the contribution of each covariate. A downside

of Firpo, Fortin, Lemieux (2009) is that the basic approach is less intuitive.23

The original classification into 16 education categories, 498 occupations and 262 4-digit industries

22In labor economics, the unexplained difference is often called a “wage structure effect”. This is because the difference in
the conditional distributions between the two groups may stem from different wage schemes, i.e. returns to e.g. education.
However, it may also stem from different conditional (i.e. residual) skill distributions in the two groups. The decomposition
by Chernozhukov et al. and Firpo et al. do not and cannot disentangle wage structure from residual skills. We do not
take a stance at either interpretation and simply call it the unexplained difference.

23Firpo, Fortin, Lemieux (2009) is an approximation for a marginal location shift of the distribution of the covariate.
It is not known how good this approximation is if the change in the distribution of the covariate of interest is large or if
the covariate of interest is discrete (like dummy variables). See Rothe (2012, Appendix B) for a discussion.
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Table 1: Decomposing the skill distributions of large and small cities.

10% Quantile 90% Quantile

Observed Quantiles:

- Large cities 5.365 (0.004) *** 6.994 (0.006) ***

- Small cities 5.439 (0.005) *** 6.862 (0.007) ***

- Difference -0.074 (0.006) *** 0.132 (0.009) ***

Firpo, Fortin, Lemieux (2009)

Predicted Quantiles:

- Large cities 5.387 (0.005) *** 7.022 (0.005) ***

- Small cities 5.454 (0.004) *** 6.878 (0.008) ***

- Difference -0.068 (0.007) *** 0.144 (0.009) ***

Explained by observables:

- Education (16 categories) 0.003 (0.002) ** 0.052 (0.002) ***

- Occupation (22 categories) 0.004 (0.002) * 0.025 (0.003) ***

- Industry (51 categories) -0.001 (0.002) 0.013 (0.002) ***

- Race (4 groups) -0.004 (0.001) *** -0.015 (0.001) ***

- Sex -0.001 (0.001) * -0.002 (0.001) *

- Foreign born -0.020 (0.002) *** -0.004 (0.001) ***

- Age (2nd order polynomial) 0.000 (0.001) -0.002 (0.001) *

Total explained by observables -0.018 (0.004) *** 0.067 (0.005) ***

Not explained by observables -0.049 (0.006) *** 0.077 (0.008) ***

Chernozhukov, Fernández-Val, Melly (2013)

Predicted Quantile difference -0.068 (0.006) *** 0.113 (0.009) ***

Explained by observables -0.019 (0.004) *** 0.064 (0.005) ***

Not explained by observables -0.050 (0.007) *** 0.049 (0.007) ***

Notes: Large cities: population > 2.5m; small cities: population <1m. Boot-
strapped standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01.
2009 CPS data on 25,584 workers in 202 small CBSAs and 34,999 workers in
21 large CBSAs.

would lead to over 900 parameters in each city group, which are hard to identify with our data. We

therefore use 2-digit industry classification (52 classes), and 2-digit occupation codes (22 categories),

which are both assigned by the NBER. Age enters as a second order polynomial and race in 4 groups

(White, Black, Asian, Other).

Table 1 shows the results of the two approaches. The first 3 rows report the raw sample quantiles of

the skill, log(utility), distributions as in the right panel of Figure 1. Both methods predict these quantiles

well. With the method of Firpo, Fortin, Lemieux (2009), only about 26% of the predicted difference in

the 10th percentile can be explained by the composition of observed characteristics. However, 46% of

the predicted difference in the 90th percentile can be explained by observed characteristics. Most of this
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Table 2: Quantifying the Production Technology.

Observed model outcomes:

city j w1j w2j w3j m1j m2j m3j Cj

1 416 844 1923 730,509 1,953,303 730,509 21

2 354 717 1634 30,900 105,516 30,900 204

Implied production technology for different values of γ:

γ λ A1 A2 y1 y2 y3

0.655 1.0407 190,228 59,107 0.2329 1 1.0762

0.8 1.0193 19,118 9,065 0.3189 1 1.4733

0.9 1.0086 3,992 2,534 0.3964 1 1.8317

Notes: wij : weekly median wage (in US$); mij : number of workers
of skill type i in cities of type j (in units); Cj : number of cities of
type j (in units); γ: exogenously chosen technology parameter; λ,Ajyi:
estimated technology parameters.

is explained by education (36%) and occupation (17%). The strong explanatory power of observables

for the top tail and the relatively low explanatory power for the bottom tail reiterates the findings in

the previous sections. The method of Chernozhukov, Fernández-Val, Melly leads to very similar results.

57% of the 90th percentile is explained by the composition of observables and 28% of the 10thpercentile.

The novel finding here is that there is an asymmetry between the low and the high skilled. For the

low-skilled, very little of the difference between big and small cities can be explained by observables,

whereas for the high-skilled about half can be explained by observables.

8 Quantifying the Production Technology

In this Section, we use the equilibrium properties of the theoretical model to quantify the features of the

technology. The model allows us to obtain quantitative information on the technology, in particular the

differences in TFP across big and small cities, the productivity differences across differentially skilled

workers as well as the magnitude of the extreme-skill complementarity.

Using the observed skill distributions, we perform a very simple quantitative exercise to get an idea

of the magnitude of these underlying parameter values of the production technology. To that end, we

can actually solve the system of equations explicitly (see the appendix for the derivation) to obtain a

system of 5 equations in 5 unknowns λ,A1, A2, y1, y3 where y2 is normalized to 1 and γ is exogenously

chosen.24

24In a CES technology, there is an indeterminacy between the Aj ’s and the yi’s. Here, since the skill i = 2 is CES with
the composite of skills 1 and 3, it is proportional to Aj (see the second equation), we can normalize it to 1.
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To adapt the data to our model with three skill types and two cities, we partition the distribution of

our wage-based measure of skills into three types i = 1, 2, 3 corresponding to the 20-60-20 percentiles,

and construct two city types j = 1, 2; type 1 with population larger than 2.5 million and city type 2

with population less than 1 million. We then use observable median25 wages wij within each city type

and skill group, the actual number of agents of each type in each city mij ,
26 and the number of cities

in the sample Cj . Housing prices pj satisfy equation (4).27 We use the parameter values α = 0.24

(the share of expenditure on housing) and estimate the production technology parameters for different

values of γ. The results are reported in Table 2. As will become clear next, we tend to find more

reasonable estimates for values of γ closer to 1.

For γ = 0.655 which corresponds to an elasticity of substitution between low- and high-skill workers

of 2.9 (Acemoglu and Autor, 2012), TFP is 3 times higher in the large city than in the small city,

while the top skill group is 4.6 times as productive as the bottom skill group, but merely 8% more

productive than the middle skill types. The parameter λ that measures the extent of the comple-

mentarities/substitutabilities is larger than 1, confirming that there are complementarities between the

extreme skill types. The magnitude of λ is 1.041. Instead, for higher γ there is less curvature on the

amount of labor in output produced, and as a result TFP differences are much closer. For γ = 0.8,

TFP is double, and the high-skilled are still 4.6 times more productive than the low-skilled (this is also

the case for γ = 0.9) but now they are 47% more productive than the middle-skilled. For γ = 0.9, TFP

is 57% higher in the large cities, and the high-skilled are 80% more productive relative to the middle-

skilled types. The technology seems to more reasonably capture the TFP differences and productivity

y3 for high γ, corresponding to high elasticities of substitution. This is consistent with the fact that

we do not condition on age (or other observables for that matter), where the age elasticity within skill

group is typically large (of the order of 5).

In summary, quantitatively we find that the productivity difference between the top and bottom

skilled workers is substantial and in the order of at least four times bigger. For all specifications the

degree of extreme-skill complementarity is positive, ranging from 0.8% to 4% depending on the returns

to scale. In all specifications, the differences in TFP across large and small cities is big. Even the lowest

estimate with limited decreasing returns, TFP is about sixty percent higher in large cities.

25We use median wages because the tails are truncated lognormals, and thus heavily skewed. We adjust the observed
wages such that the relative wages of different skill types are constant across cities as the theory predicts.

26We impose symmetry on the observed numbers for skill types 1 and 3.
27The observed prices for the two city groups are very similar to that implied by relative wages.
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9 Conclusion

We propose a tractable theory of spatially dispersed production with perfectly mobile heterogeneous

inputs, i.e. skilled labor. Differences in TFP lead to differences in demand for skills across cities. In

general equilibrium, wages and housing prices clear the labor and housing markets. Perfect mobility of

citizens leads to utility equalization by skill. We show that cities with a higher TFP are larger and that

a CES production technology entails identical skill distributions across cities with different productiv-

ity. We consider two alternative hypotheses concerning differential complementarities/substitutabilities

between skills and derive the implication for the equilibrium skill distribution across cities. First, when

there are complementarities between extreme skills, the firm size distribution in larger cities has thicker

tails. Instead, when there are complementarities between the top skills, there is first order stochastic

dominance of the skill distribution in large cities.

We also find robust empirical evidence from US data for thick tails in the skill distribution. Adjusting

wages for housing prices by means of a hedonic price index, we find that average skills are constant, but

the standard deviation increases with city size. Big cities have big real inequality. Given the theory,

this provides empirical support for the extreme-skill complementarity hypothesis: the productivity of

the high-skilled is enhanced most by the providers of low-skilled services.

These findings contribute to our understanding of the urban wage premium. Not only do we establish

robustly that higher wages are not due to higher average skill, but we also find that there is an urban

inequality “premium”. In the presence of extreme skill complementarities, this indicates that extreme

skills multiply total factor productivity differences.

Finally, our method and results can provide new insights into the role of complementarities in

production. At the economy wide level, we know remarkably little about the skill composition across

firms of different sizes, for example, and even less about the pattern of complementarities between

differentially skilled workers within firms. Understanding the patterns of complementarities is not only

important for the efficient allocation of resources. As we have demonstrated in this paper, they are also

key for the equitable distribution of the output of production.
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Appendix A: Theory

Preliminaries

The full system of equations that pins down the equilibrium allocation can be written as, for j ∈ {1, 2}:




λAj
[
mγ

3jy3 +mγ
1jy1

]λ−1
γmγ−1

1j y1 − w1j = 0

γAjm
γ−1
2j y2 − w2j = 0

λAj
[
mγ

3jy3 +mγ
1jy1

]λ−1
γmγ−1

3j y3 − w3j = 0(
wi1
wi2

)
=
(
p1
p2

)α
, ∀i ∈ {1, 2, 3}

C1mi1 + C2mi2 = Mi, ∀i ∈ {1, 2, 3}
hij =

αwij
pj

, ∀i ∈ {1, 2, 3}
∑3
i=1 hijmij = H

(18)

Since wi2 =
(
p2
p1

)α
wi1, we can equate the first-order conditions to obtain:





A1 [mγ
31y3 +mγ

11y1]
λ−1

mγ−1
11 =

(
p1
p2

)α
A2 [mγ

32y3 +mγ
12y1]

λ−1
mγ−1

12

A1m
γ−1
21 =

(
p1
p2

)α
A2m

γ−1
22

A1 [mγ
31y3 +mγ

11y1]
λ−1

mγ−1
31 =

(
p1
p2

)α
A2 [mγ

32y3 +mγ
12y1]

λ−1
mγ−1

32

C1mi1 + C2mi2 = Mi, ∀i ∈ {1, 2, 3}
mγ

2jy2 + λ
[
mγ

3jy3 +mγ
1jy1

]λ
= H

pj
αγAj

(19)

From the first and the third equation, we obtain:

A1 [mγ
31y3 +mγ

11y1]
λ−1

mγ−1
11

A1 [mγ
31y3 +mγ

11y1]
λ−1

mγ−1
31

=

(
p1
p2

)α
A2 [mγ

32y3 +mγ
12y1]

λ−1
mγ−1

12(
p1
p2

)α
A2 [mγ

32y3 +mγ
12y1]

λ−1
mγ−1

32

(20)

After rearranging and using market clearing (C1mi1 + C2mi2 = Mi) we can write this as:

m11 =
M1

M3
m31, (21)

and we can write the first equation in (19) as:

[mγ
31y3 +mγ

11y1]
λ−1

mγ−1
11

mγ−1
21

=
[mγ

32y3 +mγ
12y1]

λ−1
mγ−1

12

mγ−1
22

. (22)

Now given the symmetry assumption m11 = m31 and m12 = m32, this then implies:

m21 =

(
m11

m12

)λγ−1
γ−1

m22, (23)



and we substitute it back in (19) and rearrange to get:

(
m11

m12

)λγ−1

=

(
p1

p2

)α
A2

A1
(24)

Using the fact that m12 = M1

C2
− C1

C2
m11, we have:

m11 =

[(
p1
p2

)α
A2

A1

] 1
λγ−1 M1

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
λγ−1

and m12 =
M1

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
λγ−1

(25)

and likewise for the other expressions for m2j and m3j :

m21 =

[(
p1
p2

)α
A2

A1

] 1
γ−1 M2

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
γ−1

and m22 =
M2

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
γ−1

(26)

m31 =

[(
p1
p2

)α
A2

A1

] 1
λγ−1 M3

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
λγ−1

and m32 =
M3

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
λγ−1

(27)

Substituting the mij ’s in the last equation in (19), and rearranging, we get:





[(
p2
p1

) 1−λγ(1−α)
1−λγ

(
A1

A2

) 1
1−λγ − 1

]
λ

(
M1
C2

1+
C1
C2

[(
p1
p2

)α A2
A1

] 1
λγ−1

)λγ
[y3 + y1]

λ

+

[(
p2
p1

) 1−γ(1−α)
1−γ

(
A1

A2

) 1
1−γ − 1

]


M2
C2{

1+
C1
C2

[(
p1
p2

)α A2
A1

] 1
γ−1

}


γ

y2





(
p1

p2

A2

A1

)
= 0 (F)

where we have used the fact that γ < 1, λ > 1, and λγ < 1. We can now establish Lemma 1.

Lemma 1 Let A1 > A2 and λγ < 1, γ < 1. Then housing prices in the more productive city are larger, p1 > p2.

Proof. In order to satisfy the equality (F), the only terms that can be negative are the ones in between squared

brackets. Since A1

A2
> 1 and min

{
1

1−λγ ,
1

1−γ

}
> 1, the only way one of these terms is negative is if

min





(
p2

p1

) 1−λγ(1−α)
1−λγ

(
A1

A2

) 1
1−λγ

,

(
p2

p1

) 1−γ(1−α)
1−γ

(
A1

A2

) 1
1−γ



 < 1.

However, since 1−λγ(1−α)
1−λγ and 1−γ(1−α)

1−γ are positive, this is only possible if p2
p1
< 1⇒ p2 < p1.

Proof of Theorem 1

Theorem 1 City Size and TFP. Let A1 > A2 and λγ < 1, γ < 1. Then the more productive city is larger,

S1 > S2.



Proof. Based on Lemma 1, we know that p1 > p2. Since λ > 1 and λγ < 1, we have that 1
1−λγ >

1
1−γ 1 and

1−λγ(1−α)
1−λγ > 1−γ(1−α)

1−γ > 1. Since we know that A1 > A2, we have that the first term in squared brackets in (F)

is positive if

p2

p1
>

(
A2

A1

) 1
1−λγ(1−α)

(28)

while the second term in squared brackets is positive if:

p2

p1
>

(
A2

A1

) 1
1−γ(1−α)

. (29)

Since A2

A1
< 1, we have that:

(
p2

p1

)α
A1

A2
∈



(
A1

A2

) (1−λγ)(1−α)
1−λγ(1−α)

,

(
A1

A2

) (1−γ)(1−α)
1−γ(1−α)


 > 1. (30)

From the expressions for mij :

m11 =

[(
p1
p2

)α
A2

A1

] 1
λγ−1 M1

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
λγ−1

(31)

m12 =
M1

C2

1 + C1

C2

[(
p1
p2

)α
A2

A1

] 1
λγ−1

, (32)

and
(
p2
p1

)α
A1

A2
> 1, we have that m11 > m12, and likewise m21 > m22 and m31 > m32. Finally, since:

Sj = m1j +m2j +m3j (33)

it immediately follows that S1 > S2.

Proof of Theorem 2

Theorem 2 thick tails. Given A1 > A2, λ > 1 and λγ < 1, the skill distribution in the larger city has thicker

tails.

Proof. Consider the distributions, denoted by pdfij =
mij
Sj

, where we denote by Z =
(
p1
p2

)α
A2

A1
< 1. Then we



can write

pdf11 =

Z
1

λγ−1 M1
C2

1+
C1
C2
Z

1
λγ−1

Z
1

λγ−1 M1+M3
C2

1+
C1
C2
Z

1
λγ−1

+
Z

1
γ−1 M2

C2

1+
C1
C2
Z

1
γ−1

(34)

pdf12 =

M1
C2

1+
C1
C2
Z

1
λγ−1

M1+M3
C2

1+
C1
C2
Z

1
λγ−1

+
M2
C2

1+
C1
C2
Z

1
γ−1

(35)

Then:

pdf11

pdf12
=

Z
1

λγ−1

{
(M1 +M3)×

[
C2 + C1Z

1
γ−1

]
+M2 ×

[
C2 + C1Z

1
λγ−1

]}

Z
1

λγ−1 (M1 +M3)×
[
C2 + C1Z

1
γ−1

]
+
[
C2 + C1Z

1
λγ−1

]
× Z 1

γ−1M2

> 1 (36)

Recall that Z < 1, and therefore Z
1

λγ−1 =
(

1
Z

) 1
1−λγ , then since 1

Z > 1, the larger the exponent, the larger is
(

1
Z

) 1
1−λγ . Since λ > 1 and λγ < 1, 1

1−λγ >
1

1−λ , it follows that pdf11 > pdf12.

Similarly we can show that pdf31 > pdf32:

pdf31

pdf32
=

Z
1

λγ−1

{
(M1 +M3)×

[
C2 + C1Z

1
γ−1

]
+M2 ×

[
C2 + C1Z

1
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]}

Z
1

λγ−1 (M1 +M3)×
[
C2 + C1Z

1
γ−1

]
+
[
C2 + C1Z

1
λγ−1

]
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γ−1M2

> 1 (37)

Finally:

pdf21 =

[
C2 + C1Z

1
λγ−1

]
Z

1
γ−1M2

Z
1
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[
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1
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]
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1
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1
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[
C2 + C1Z
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Then:

pdf21

pdf22
=

Z
1

γ−1 (M1 +M3)
[
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1
λ−1

]
+M2

[
C2 + C1Z

1
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]

Z
1

λγ−1 (M1 +M3)×
[
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1
λ−1

]
+ Z

1
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[
C2 + C1Z

1
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] (38)

Again, since Z
1

γ−1 < Z
1

λγ−1 , now we have that pdf21 < pdf22.

Proof of Theorem 3

Theorem 3 Top-Skill Complementarity. Given A1 > A2, λ > 1 and λγ < 1, the skill distribution in the larger

city first order stochastically dominates.

Proof. The proof follows closely the logic of Theorem 2.
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1
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Finally, analogously to pdf21
pdf22

, we can derive pdf31
pdf32

:
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=
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Quantifying the Production Technology: Derivation of the System

The equilibrium allocation can explicitly be represented by the following system of 5 equations in 5 unknowns

λ,A1, A2, y1, y3 where y2 is normalized to 1:

λ =
1

γ


1 + (γ − 1)

log
(

C2m21

M2−C1m21

)

log
(

C2m11

M1−C1m11

)


 , A1 =

w21

γy2m
γ−1
21

, A2 = A1

(
p2

p1

)α(
C2m21

M2 − C1m21

)γ−1

, (42)

y1 =


 w11

λγA1

[
m11 +m31

w31

w11
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m
λ(γ−1)
11


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, y3 =


 w31

λγA1

[
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m
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31




1
λ

From equation (26), we can solve for Z:

Z =

(
C2m21

M2 − C1m21

)γ−1

. (43)

Now solve the expression for m11 in terms of λ, and substitute for this expression for Z:

λ =
1

γ


1 + (γ − 1)

log
(

C2m21

M2−C1m21

)

log
(

C2m11

M1−C1m11

)


 . (44)

Therefore, the solution for λ, Z is simply the explicit solution to the equations (43) and (44).

Now from the second FOC (equation (10)) we obtain:

y2 =
w21

γA1m
γ−1
21

, (45)

while from the first (equation (9)) and the third FOC (equation (11)), we can solve explicitly for y1 and y3:

y1 =
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(46)
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[
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m
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

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λ

. (47)

Finally, we obtain the expression for A1 from the second FOC (10) and the expression for A2 from substituting



for Z =
(
p1
p2

)α
A2

A1
in (43):

A1 =
w21

γy2m
γ−1
21

(48)

A2 = A1

(
p2

p1

)α(
C2m21

M2 − C1m21

)γ−1

. (49)

Normalizing y2 = 1, equations (44), (48), (49), (46), and (47) constitute the system (42).



Table 3: Rank of cities by 2009 population.

City Population

1 New York-Northern New Jersey-Long Island, NY-NJ-PA 19,069,796

2 Los Angeles-Long Beach-Santa Ana, CA 12,874,797

3 Chicago-Naperville-Joliet, IL-IN-WI 9,580,567

4 Dallas-Fort Worth-Arlington, TX 6,447,615

5 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 5,968,252

6 Houston-Sugar Land-Baytown, TX 5,867,489

7 Miami-Fort Lauderdale-Pompano Beach, FL 5,547,051

8 Washington-Arlington-Alexandria, DC-VA-MD-WV 5,476,241

9 Atlanta-Sandy Springs-Marietta, GA 5,475,213

10 Boston-Cambridge-Quincy, MA-NH 4,588,680

...

245 Farmington, NM 124,131

246 Bowling Green, KY 120,595

247 Harrisonburg, VA 120,271

248 Lawrence, KS 116,383

249 Victoria, TX 115,396

250 Anniston-Oxford, AL 114,081

251 Lawton, OK 113,228

252 Kankakee-Bradley, IL 113,215

253 Michigan City-La Porte, IN 111,063

254 Decatur, IL 108,204

Notes: cities are defined as core based statistical areas (CBSA). The Office
of Management and Budget (OMB) defines 940 metropolitan and microp-
olitan areas of which we use the ones with population above 100,000 and
where housing prices are observed.

Appendix B: Data

Wage Data

Wage data is taken from the Current Population Survey (CPS), a joint effort between the Bureau of Labor

Statistics (BLS) and the Census Bureau.28 The CPS is a monthly survey and used by the U.S. Government to

calculate the official unemployment and labor force participation figures. We the 2009 merged outgoing rotation

groups (MORG) as provided by the National Bureau of Economic Research (NBER).29 The MORG are extracts

of the basic monthly data during the household’s fourth and eighth month in the survey, when usual weekly

hours/earnings are asked.

We use the variable ‘earnwke’ as created by the NBER.30 This variable reports earnings per week in the

28See http://www.bls.gov/cps/
29Stata data file available at http://www.nber.org/morg/annual/morg09.dta
30See details of the variable creation at the NBER website http://www.nber.org/cps/



current job. It includes overtime, tips and commissions. For hourly workers, Item 25a (“How many hours per

week does...usually work at this job?”) times Item 25c (“How much does ...earn per hour?”) appears here. For

weekly workers, Item 25d (“How much does...usually earn per week at this job before deductions?”) appearshere.

The NBER version of the CPS identifies the core-based statistical area (CBSA) of the observation. It reports

the New England city and town areas (NECTA) definition and codes for metro areas in the 6 New England states

and the Federal Information Processing Standards (FIPS) definition and codes for all other states. Table 3 shows

the 10 largest and 10 smallest included CBSAs.

We restrict the sample to full time workers (between 36 and 60 usual hours per week). We also drop the

lowest 0.5% of wages as a pragmatic way of eliminating likely misreported wages close to zero. Our final wage

sample includes 76,821 workers in 254 identified CBSAs out of the 320,941 surveyed persons. CPS wage data is

in 2009 top-coded at a weekly wage of 2884.61 USD which applies to 2,308 or 3.0% of workers. All estimations

use the weights in variable ‘earnwt’ provided by the NBER.

Our baseline results use CPS wage data because they are generally considered of higher quality than Census

data (see e.g. Baum-Snow and Neal, 2009). However, the CPS has two disadvantages: it has relatively low top

codes and it does not identify the location of the household within cities. We therefore alternatively use wage

data from the 2009 American Community Survey (ACS) collected by the U.S. Census Bureau.31 The data is

provided by the Minnesota Population Center in its Integrated Public Use Microdata Series (IPUMS).32

We use the variable ‘incwage’ which measures yearly wage and salary income. We restrict our sample to

full-time (between 36 and 60 usual hours per week) and full-year (between 48 and 52 weeks per year) workers.

The yearly wage is divided by the number of weeks worked to get weakly wages comparable to the CPS data.

ACS are top-coded at the 99.5 percentile of each state. We also drop the lowest 0.1% of wages as a pragmatic

way of eliminating likely misreported wages close to zero. Our final ACS wage sample includes 654,043 workers

in 293 identified CBSAs.

The ACS discloses the co-called Public Use Microdata Area (PUMA). PUMA’s are areas with a maximum of

179,405 housing units and only partly overlap with political borders of towns and counties. We use the Geographic

Correspondence Engine with Census 2000 Geography from the Missouri Census Data Center(MCDC) 33 to link

PUMA areas to CBSAs. The MCDC data matches every urban PUMA code to one or more CBSA codes and

reports the fraction of housing units that are matched. We assign a PUMA to a CBSA if this fraction is bigger

than 33%. In cases where the PUMA does not fully belong to a CBSA, we assign the PUMA to the CBSA where

most of its housing units belong to. Our final sample contains data from 533 metropolitan or micropolitan core

based statistical areas (CBSA) out of a total of 940 existing CBSAs. Note that we do not use the metropolitan

area code provided in the ACS in variable ‘metaread’. This variable reports a mixture of metropolitan area codes

(MSA, PMSA, central city or county) which is difficult to match with the CBSA definition. Our final sample

contains 273,761 rental units in 533 CBSAs and 1884 PUMA areas.

31See http://www.census.gov/acs/www/ for more information on the survey.
32See Ruggles et al. (2010) for the data source and http://usa.ipums.org/usa/ for a detailed description of data and

variables.
33Available at http://mcdc.missouri.edu/websas/geocorr2k.html.



Local housing and commodity price indices

We use the 2009 American Community Survey (ACS) for our baseline housing price estimates.

The variable ‘rent’ reports the monthly contract rent for rental units in contemporary dollars. We also use

all the reported housing characteristics of the unit: ‘rooms’ is the number of rooms, ‘unitsstr’ is the units in

structure (in 8 groups), and ‘builtyr’ is the age of structure (in 13 age groups).

We drop housing units in group quarters, farmhouses, drop mobile homes, trailers, boats, and tents and only

use data from housing units in identified metropolitan or micropolitan core based statistical areas (CBSA).

For robustness checks, we also purchased the ACCRA Cost of Living Index from C2ER (The Council for

Community and Economic Research). ACCRA data are collected by local chambers of commerce and similar

organization who have volunteered to participate. They are reported for 302 core-based statistical areas (CBSA)

and 23 metropolitan divisions for the 11 largest CBSAs. The ACCRA Cost of Living Index consists of six major

categories: grocery items, housing, utilities, transportation, health care, and miscellaneous goods and services.

These major categories in turn are composed of subcategories, each of which is represented by one or more items

in the Index. In total, local prices of 60 items are reported, e.g. tbone steak (item 1), phone (31), gasoline (33),

Lipitor (38), pizza (40) haircut (42), movie (52). Indices for major categories and an overall composite index

are calculated as weighted averages where weights come from the Consumer Expenditures Survey conducted by

the U.S. Bureau of Labor Statistics. We use the average of quarterly data from Q2.2008 to Q2.2009 in order

to minimize the number of missing cities from non-reporting places. We use the average across metropolitan

divisions to match ACCRA data to our wage data.

Hedonic Regression to calculate housing price index

We model housing as a homogenous good h with a location specific per unit price pj . In practice, however,

housing differs in many observable dimensions. Observed housing prices therefore reflect both the location and

the physical characteristics of the unit. Sieg et al. (2002) show the conditions under which housing can be treated

as if it were homogenous and how to construct a price index for it. Take our Cobb-Douglas utility function

u(c, h(z)) = c1−αhα(z) (50)

and assume that housing h(z) is a function, for simplicity of exposition only, of two characteristics z = (z1, z2)

with a nested Cobb-Douglas structure

h(z) = zδ1z
1−δ
2 . (51)

The indirect utility given the market prices q1 and q2 for, respectively, characteristic z1 and z2 is then

Ui = αα (1− α)
1−α [

Lqδ1q
1−δ
2

]−α
w (52)



Table 4: Hedonic regressions for rental units.

CBSA level PUMA level

Number of rooms

1 -0.2314*** (0.0056) -0.2238*** (0.0055)

2 -0.1658*** (0.0050) -0.1863*** (0.0049)

3 -0.1329*** (0.0031) -0.1386*** (0.0030)

4 0 0

5 0.0760*** (0.0033) 0.0798*** (0.0031)

6 0.1614*** (0.0041) 0.1592*** (0.0039)

7 0.2405*** (0.0057) 0.2313*** (0.0055)

8 0.2877*** (0.0077) 0.2717*** (0.0074)

9+ 0.3341*** (0.0082) 0.3049*** (0.0079)

Age of structure

1939 or earlier -0.3068*** (0.0053) -0.2700*** (0.0053)

1940-1949 -0.3603*** (0.0062) -0.3219*** (0.0061)

1950-1959 -0.3167*** (0.0055) -0.2970*** (0.0054)

1960-1969 -0.2887*** (0.0053) -0.2793*** (0.0052)

1970-1979 -0.2553*** (0.0050) -0.2542*** (0.0049)

1980-1989 -0.1758*** (0.0052) -0.1838*** (0.0050)

1990-1999 -0.0780*** (0.0054) -0.0838*** (0.0052)

2000-2004 0 0

2005 0.0122 (0.0097) 0.0223** (0.0094)

2006 0.0421*** (0.0099) 0.0537*** (0.0095)

2007 0.0548*** (0.0104) 0.0621*** (0.0100)

2008 0.1029*** (0.0135) 0.1139*** (0.0130)

2009 0.0343 (0.0444) 0.0347 (0.0427)

Units in structure

1-family house detached 0 0

1-family house attached -0.0635*** (0.0050) -0.0677*** (0.0049)

2-family building -0.1257*** (0.0045) -0.1289*** (0.0044)

3-4 family building -0.1314*** (0.0042) -0.1434*** (0.0041)

5-9 family building -0.1239*** (0.0042) -0.1532*** (0.0041)

10-19 family building -0.0786*** (0.0043) -0.1171*** (0.0042)

20-49 family building -0.1023*** (0.0048) -0.1354*** (0.0047)

50+ family building -0.0929*** (0.0045) -0.1413*** (0.0045)

Constant 6.5728*** (0.0481) 6.0277*** (0.0523)

CBSA Fixed Effects yes no

PUMA Fixed Effects no yes

N (rental units) 273,761 273,761

Number of CBSAs 533 533

Number of PUMA regions 1884

Notes: * p<0.10, ** p<0.05, *** p<0.01. Reference groups are indicated by “0”.

where L = 1/[δδ (1− δ)1−δ
]. Defining the price index p = Lqδ1q

1−δ
2 the indirect utility is

Ui = αα (1− α)
1−α w

pα
(53)



Table 5: Rank of cities by estimated housing price index.

City Population Rent Index

1 San Jose-Sunnyvale-Santa Clara, CA 1,839,700 1.74

2 San Francisco-Oakland-Fremont, CA 4,317,853 1.64

3 Santa Barbara-Santa Maria-Goleta, CA 407,057 1.62

4 Oxnard-Thousand Oaks-Ventura, CA 802,983 1.62

5 Honolulu, HI 907,574 1.61

6 Los Angeles-Long Beach-Santa Ana, CA 12,874,797 1.55

7 San Diego-Carlsbad-San Marcos, CA 3,053,793 1.51

8 Washington-Arlington-Alexandria, DC-VA-MD-WV 5,476,241 1.46

9 Napa, CA 134,650 1.43

10 Santa Cruz-Watsonville, CA 256,218 1.43

11 New York-Northern New Jersey-Long Island, NY-NJ-PA 19,069,796 1.41

...

245 McAllen-Edinburg-Mission, TX 741,152 .50

246 Lawton, OK 113,228 .50

247 Lake Charles, LA 194,138 .49

248 Huntington-Ashland, WV-KY-OH 285,624 .49

249 Monroe, LA 174,086 .47

250 Johnstown, PA 143,998 .47

251 Brownsville-Harlingen, TX 396,371 .47

252 Decatur, AL 151,399 .46

253 Joplin, MO 174,300 .45

254 Anniston-Oxford, AL 114,081 .36

Notes: Housing price indices based on hedonic regressions using the 2009 American
Community Survey.

and thus identical to the one derived assuming homogenous housing h with market price p. The sub-expenditure

function e(q1, q2, h) is defined as the minimum expenditure necessary to obtain h units of housing and given by

e(q1, q2, h) = Lqδ1q
1−δ
2 h = ph = pzδ1z

1−δ
2 . (54)

Taking logarithms and assuming that we observe z1 but not z2 yields a linear hedonic regression model

log(ejn) = log(pj) + δ log(z1jn) + ujn (55)

where ejn is the observed rental price of housing unit n and log(pj) is city-specific common component of housing

prices. We can therefore estimate the city specific price level as location-specific fixed effect in a simple hedonic

regression of log rental prices on the physical characteristics.

Table 4 shows the results of the hedonic regressions for rental units using data from the 2009 American

Community Survey (ACS). Column (1) shows the results with 533 fixed effects for cities (CBSA) and column

(2) with 1844 fixed effects for neighbourhoods (PUMA areas). We use all relevant housing characteristics in the
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Figure 14: Expenditure Share using Stone-Geary preferences, α = 0.22, h = 250.

data and add all categories as dummy variables without functional form assumptions. All coefficients are highly

significant with expected signs: housing prices increase with the number of rooms and decrease with the age of

the structure. We find a non-monotonic relationship in the numbers of units in the structure with highest prices

for single-family detached homes and lowest prices for 3-4 family buildings.

We standardize the housing price index such that the weighted (by housing units) average equals 1. Table 5

shows the resulting housing price indices for the highest and lowest priced cities in our sample. The highest

priced city is San Jose, CA with rental prices 74% above average urban prices; the lowest priced city with more

than 100,000 inhabitants is Anniston, AL with prices 64% below average.

Expenditure Data for Estimation of Non-Linear Engel Curve

We use Public Use Microdata (PUMD) from the Consumer Expenditure Survey (CEX) which is provided by the

U.S. Bureau of Labor Statistics.34 Our sample consists of interview data for 4581 households in the first quarter

of 2011 in the data file “fmli111x”. The PUMD reports the exact city (MSA) for 2021 households living in one

of the 21 largest MSAs. We merge these data with our hedonic price indices from the corresponding CBSAs.

The housing expenditure shares, si, are measured as “expenditures on shelter this quarter” (variable SHELTCQ)

divided by “total expenditures this quarter” (TOTEXPCQ). Weekly wages, wi are measured as “income before

taxes in past 12 months” (FINCBTAX) divided by 52. Housing prices, pj , are measured as the hedonic price

index using the 2009 American Community Survey. We restrict our sample to weekly wage incomes above $175

because very low wages become extremely large inverse values which would almost fully determine the regression.

The limit of $175 is also the lower bound in our CPS wage data (see the data section on wages) and guarantees

that the indirect utility is defined for all observations. The regression with 1569 observations results in: α̂ = 0.224

34See http://www.bls.gov/cex/ for details on the CEX and its public use individual data version. The CEX allows us to
calculate expenditure share as a ratio of total expenditures. The ACS does not provide total expenditures of individuals
or households. Housing shares as a ratio of reported income are extremely noisy with housing expenditure shares above
100% for a large fraction of low income households. We did not get any reasonable Stone-Geary parameters based on ACS
data.



(s.e.= 0.005), β̂ = 21.5 (3.05), ĥ = 27.7 (3.79 using the delta method). As a robustness check, we also use values

for h different from the estimated value. As an extreme example, for h = 250 we find that even though the

shape of the distribution changes dramatically – especially for the low income workers – the thick tails are still

prominently present, as illustrated in Figure 14.



Appendix C: Preferences for Services and Home Production

In this appendix we explore the micro foundations for the complementarities between extreme skills. We consider

an explanation based on preferences for low-skilled services in combination with home production. Households

have preferences for low-skilled services. Those services can be produced with home production and they can be

traded on the market.

Citizens have preferences over the quantity of a consumption good c, services s and the amount of housing

h represented by u(h, s, c) = hαsβc1−α−β where α, β, and (α+ β) ∈ [0, 1]. All workers have a unit endowment of

time to be divided between home production denoted by t and market production 1 − t. Home productivity is

independent of the worker’s skills. The amount of services generated in home production is equal to Γtδ, where Γ

is a positive parameter, but the agent incurs a quasi fixed cost K, a cost that is incurred only if there is positive

production. Services can be traded at a city-specific price rj ≥ 0. As before, output in the formal sector generates

a wage that is contingent on the worker’s skill and produced with the technology AjF (·) that is either CES or

satisfies top- or extreme-skill complementarity.

A citizen i in city j chooses the bundle {h, s, c} to maximize utility subject to the budget constraint:

max
{h,s,c,t}

u(c, h, s) = hαsβc1−α−β (56)

s.t. ph+ rs+ c ≤ w(1− t) + I

where the quantities h, s, c, t, w are all city- and skill-specific and the prices p, r are city-specific, but we have

dropped the subscripts for notational convenience. We denote by I the income generated through services

provided. The decision problem to produce services t is given by max0<t≤1{rΓtδ − K + wt}, if t > 0, and 0

otherwise. Observe that K acts as a cost of entry in the services sector. Solving this problem, and given the cost

K, the optimal solution satisfies:

I = max
t

{
rΓ

(
rδΓ

w

) δ
1−δ

−K, 0
}
. (57)

Because of the fixed cost, there will be an occupational choice decision whether or not to produce services, and

if so, how much (t). With this optimal allocation of time between production of services and of market output,

we can pin down the demands for consumption, services, and housing as:

h =
α

p
[w(1− t?) + I] , s =

β

r
[w(1− t?) + I] , c = (1− α− β) [w(1− t?) + I] (58)

where t? = max{
(
rδΓ
w

) 1
1−δ , 0}. Observe that the time spent in household production depends on the ratio r/w.

The higher the wage, the less time she spends producing household services, and the more likely she is a net

demander of services. Moreover, because of the cost K, those with high enough wages will choose not to produce

services at all. Finally, the market clearing conditions (including in the market for services) pin down equilibrium

prices and close the model.



Table 6: Preferences for Services and Home Production.

Assumed production technology:

γ λ A1 A2 y1 y2 y3 C1 C2

0.8 1.0193 19,118 9,065 0.3189 1 1.4733 21 204

Observed model outcomes:

city j w1j w2j w3j pdf1j pdf2j pdf3j pj rj

1 430 1,315 2,330 0.2128 0.5693 0.2178 4473.43 653.88

2 261 774 1,419 0.2016 0.5986 0.1998 763.33 372.82

We cannot solve the model analytically. We have therefore performed various quantitative exercises to get

an idea of the properties of the model. In particular, we want to find parameter configurations under which we

obtain thick tails. We use the parameters α = 0.24, β = 0.2, δ = 0.3, γ = 0.8,Γ = 1,K = 0.2, and from the

data M1 = 21, 644, 289,M2 = 62, 544, 627,M3 = 21, 644, 289, C1 = 21, C2 = 204, and H = 110, 016.5, which is

based on the observed mean number of housing units. Then we use the technology parameters generated by the

exercise in section 8. The objective is to obtain distributional properties that are consistent with thick tails.

First, we can robustly reproduce the thick tails results in this model with services whenever there are extreme-

skill complementarities in the market technology. This confirms that our approach in the baseline model is robust

to the introduction of low-skilled services. At the same time, this may not be all that surprising especially

whenever the mechanism of extreme-skill complementarities is strong enough. More challenging is whether thick

tails obtain without extreme-skill complementarities. Our second finding is that with a CES market technology

and without the quasi fixed costs K, the distributions with services are identical across cities. With K > 0

and CES, the distributions differ across cities, and results in FOSD of the small city: there are relatively more

low-skilled workers in the large city, relatively more middle skilled workers in the small city and the same density

of high-skilled workers in both cities; the average skills are lower in the large cities. Third, the model generates

thick tails if preferences for services are combined with top-skill complementarity. The logic is that the top-skill

complementarity generates the fat upper tail, whereas the demand for services generates the fat lower tail.

Table 6 shows this third result in a quantitative exercise. To obtain thick tails, the income share of services

β must be large enough. When it drops below 20%, the lower tail disappears.35 This means that households

must spend nearly as much on low-skilled services as on housing. Second, the fixed cost K must also be large

enough (K = 0.2 is a big barrier), which effectively inflates the price of services. Observe that there is no such

entry barrier in the formal sector, where one would expect those to be at least as big. Finally, the top skill

complementarity must not be too strong.

Our simulations suggest that demand for services can indeed contribute to the fat lower tail and that it

is broadly consistent with extreme-skill complementarity. To generate thick tails without extreme-skill com-

plementarity, however, the required parameter are somewhat extreme. In particular, it requires a strong non-

homotheticity in the services technology, and the expenditure share on services must be unrealistically high.

35In the CEX, the direct expenditure on low-skilled services is around 5%.



Many low-skilled services are demanded indirectly because they are inputs in production: cooks in restaurants,

administrative staff in firms, etc. We find it therefore justified to model their role through the production tech-

nology. Finally, a prime advantage of our basic model with complementarities in the production technology is

that we can solve and study it analytically.
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I. General Technology: N skill types

The firm’s problem with N skills is given by:

π (m1j , ...,mjN ) = AjF (m1j , ...,mjN )−
N∑

i=1

wijmij (A.1)

Then, the system becomes:





A1Fi (m11, ...,mN1) =
(
p1
p2

)α
A2Fi (m12, ....,mN2) , ∀i ∈ {1, ..., N}

∑N
i=1 Fi (m11, ...,mN1)mi1 = H p1

αA1∑N
i=1 Fi (m12, ....,mN2)mi2 = H p2

αA2

C1mi1 + C2mi2 = Mi, ∀i ∈ {1, ..., N}

(A.2)

Now, define F (·) as (assuming without loss that N is even):

F (·) = (mγ
11y1 +mγ

N1yN )
λ1 +

(
mγ

21y2 +mγ
N−1,1yN−1

)λ2

+ ...+
(
mγ

N
2 1
yN

2
+mγ

N
2 +1,1

yN
2 +1

)λN
2 (A.3)

Substituting this back into the system, we have:





A1

(
mγi,1yi+m

γ
N−(i−1),1

yN−(i−1)

)λmin{i,N−(i−1)}i
−1
mγ−1
i,1

A2

(
mγi,2yi+m

γ
N−(i−1),2

yN−(i−1)

)λmin{i,N−(i−1)}i
−1
mγ−1
i,2

=
(
p1
p2

)α
, ∀i ∈ {1, ..., N} (1) , ..., (N)

∑N
i=1 λmin{i,N−(i−1)}i

(
mγ
i,1yi +mγ

N−(i−1),1yN−(i−1)

)λmin{i,N−(i−1)}i−1

mγ
i,1yi = H p1

αβγA1
(N + 1)

∑N
i=1 λmin{i,N−(i−1)}i

(
mγ
i,2yi +mγ

N−(i−1),2yN−(i−1)

)λmin{i,N−(i−1)}i−1

mγ
i,2yi = H p2

αβγA2
(N + 2)

C1mi1 + C2mi2 = Mi, ∀i ∈ {1, ..., N} (N + 3) , ..., (2N + 2)

(A.4)

From the first N equations, dividing the expressions for i and N − (i− 1), we have:

mi,1 =
Mi

MN−(i−1)
mN−(i−1),1, for i ∈

{
1, ...,

N

2

}
(A.5)

Considering a symmetric distribution
(
so Mi = MN−(i−1), for i ∈

{
1, ..., N2

})
, we have thatmi,1 = mN−(i−1),1.

Similarly mi2 = mN−(i−1),2 = Mi

N2
− N1

N2
mi1, for i ∈

{
1, ..., N2

}
.

From equations for i and j for i 6= j from the first N equations, we have:



[
mi,1

mN−(i−1),1

]γ−1

=

[
mi,2

mN−(i−1),2

]γ−1

, for i ∈
{

1, ...,
N

2

}
(A.6)

Using equations (N + 3) to (2N + 2), we have:

mi,1 =
Mi

MN−(i−1)
mN−(i−1),1, for i ∈

{
1, ...,

N

2

}

Considering a symmetric distribution
(
so Mi = MN−(i−1), for i ∈

{
1, ..., N2

})
, we have thatmi,1 = mN−(i−1),1.

Similarly mi2 = mN−(i−1),2 = Mi

C2
− C1

C2
mi1, for i ∈

{
1, ..., N2

}
.

From the first N equations, we have:

mi,1 =

[(
p1
p2

)α
A2

A1

] 1
λmin{i,N−(i−1)}i

γ−1

Mi

C2 +
[(

p1
p2

)α
A2

A1

] 1
λmin{i,N−(i−1)}i

γ−1

C1

(A.7)

Similarly:

mi2 =
Mi

C2 +
[(

p1
p2

)α
A2

A1

] 1
λmin{i,N−(i−1)}i

γ−1

C1

(A.8)

Then, from (N + 1), we have:

A1

p1

N∑

i=1





[(
p1
p2

)α
A2

A1

] λmin{i,N−(i−1)}i
γ

λmin{i,N−(i−1)}i
γ−1


 Mi

C2+
[(

p1
p2

)α A2
A1

] 1
λmin{i,N−(i−1)}i

γ−1
C1



λmin{i,N−(i−1)}iγ

×λmin{i,N−(i−1)}i

(
yi + yN−(i−1)

)λmin{i,N−(i−1)}i−1
yi





=
H

αβγ
(A.9)

Similarly, from (N + 2), we have:

A2

p2

N∑

i=1






 Mi

C2+
[(

p1
p2

)α A2
A1

] 1
λmin{i,N−(i−1)}i

γ−1
C1



λmin{i,N−(i−1)}iγ

×λmin{i,N−(i−1)}i

(
yi + yN−(i−1)

)λmin{i,N−(i−1)}i−1
yi





=
H

αβγ
(A.10)

Combining these expressions and rearranging, we have:

N∑

i=1





[(
p2
p1

) 1−(1−α)λmin{i,N−(i−1)}i
γ

1−λmin{i,N−(i−1)}i
γ

(
A1

A2

) 1
1−λmin{i,N−(i−1)}i

γ − 1

]
×

×


 Mi

C2+
[(

p1
p2

)α A2
A1

] 1
λmin{i,N−(i−1)}i

γ−1
C1



λmin{i,N−(i−1)}iγ

×λmin{i,N−(i−1)}i

(
yi + yN−(i−1)

)λmin{i,N−(i−1)}i−1
yi





= 0 (F) (A.11)

Lemma A.1: Let λi > 1, λiγ < 1, for every i ∈
{

1, 2, ..., N2
}

and {λi}
N
2
i=1 be a decreasing sequence. If A1 > A2,

then house prices are higher in the city with higher TFP, p1 > p2.



Proof: In order to satisfy the equality (F), the only terms that can be negative are the ones in between squared

brackets. Since A1

A2
> 1 and mini

{
1

1−λmin{i,N−(i−1)}iγ

}
> 1, the only way one of these terms is negative is

if:

min
i





(
p2

p1

) 1−(1−α)λmin{i,N−(i−1)}i
γ

1−λmin{i,N−(i−1)}i
γ

(
A1

A2

) 1
1−λmin{i,N−(i−1)}i

γ



 < 1 (A.12)

But, since mini

{(
p2
p1

) 1−(1−α)λmin{i,N−(i−1)}i
γ

1−λmin{i,N−(i−1)}i
γ

(
A1

A2

) 1
1−λmin{i,N−(i−1)}i

γ

}
> 1, the only way that the above

inequality is satisfied is if p2
p1
< 1⇒ p2 < p1. �

Theorem A.1: City Size and TFP. Let A1 > A2, λi > 1, λiγ < 1, for every i ∈
{

1, 2, ..., N2
}

and {λi}
N
2
i=1 be a

decreasing sequence. Then, the more productive city is larger, S1 > S2.

Proof: Based on Lemma A.1, we know that p1 > p2. Since λi > 1, λiγ < 1, for every i ∈
{

1, 2, ..., N2
}

and

{λi}
N
2
i=1 is a decreasing sequence, we know that 1

1−λ1γ
> 1

1−λ2γ
> · · · > 1

1−λN
2
γ > 1 and 1−(1−α)λ1γ

1−λ1γ
>

1−(1−α)λ1γ
1−λ1γ

> · · · >
1−(1−α)λN

2
γ

1−λN
2
γ > 1. But then, in order to satisfy (F), we must have some positive and

negative terms. The term with respect to i = N
2 is positive if:

p2

p1
>

(
A2

A1

) 1
1−(1−α)λN

2

γ

(A.13)

While the term with respect to i = 1 is positive if:

p2

p1
>

(
A2

A1

) 1
1−(1−α)λ1γ

(A.14)

But notice that A2

A1
< 1. Then, we have that:

(
A2

A1

) 1
1−(1−α)λN

2

γ

>

(
A2

A1

) 1
1−(1−α)λ1γ

(A.15)

Therefore, in order to satisfy (F), we must have that:

p2

p1
∈
((

A2

A1

) 1
1−(1−α)λ1γ

,

(
A2

A1

) 1
1−(1−α)λN

2

γ

)
(A.16)

But this implies that:

(
p2

p1

)α
A1

A2
∈
((

A2

A1

) α
1−(1−α)λ1γ

−1

,

(
A2

A1

) α
1−(1−α)λN

2

γ
−1
)

(A.17)

Rearranging it, we have:

(
p2

p1

)α
A1

A2
∈




(
A1

A2

) (1−α)(1−λ1γ)
1−(1−α)λ1γ

,

(
A1

A2

) (1−α)

(
1−λN

2

γ

)
1−(1−α)λN

2

γ


 (A.18)



Since A1 > A2, we have that: (
p2

p1

)α
A1

A2
> 1 (A.19)

From the expressions for mij :

mi,1 =

[(
p1
p2

)α
A2

A1

] 1
λmin{i,N−(i−1)}i

γ−1

Mi

C2 +
[(

p1
p2

)α
A2

A1

] 1
λmin{i,N−(i−1)}i

γ−1

C1

(A.20)

mi2 =
Mi

C2 +
[(

p1
p2

)α
A2

A1

] 1
λmin{i,N−(i−1)}i

γ−1

C1

(A.21)

and
(
p2
p1

)α
A1

A2
> 1, we have that mi1 > mi2, for every i ∈ {1, 2, ..., N}. Finally, since:

Sj =

N∑

i=1

mij (A.22)

it immediately follows that S1 > S2. �

Theorem A.2: thick tails. Given that A1 > A2, λi > 1, λiγ < 1, for every i ∈
{

1, 2, ..., N2
}

and {λi}
N
2
i=1 is a

decreasing sequence , t;he skill distribution in the larger city has thicker tails.

Proof:

pdf11 =

[(
p2
p1

)α A1
A2

] 1
1−λ1γM1

C2+
[(

p2
p1

)α A1
A2

] 1
1−λ1γ C1

∑N
i=1

[(
p2
p1

)α A1
A2

] 1
1−λmin{i,N−(i−1)}i

γ
Mi

C2+
[(

p2
p1

)α A1
A2

] 1
1−λmin{i,N−(i−1)}i

γ
C1

(A.23)

=
1

∑N
i=1

Mi

M1





[(
p2
p1

)α
A1

A2

] (λmin{i,N−(i−1)}i
−λ1)γ

(1−λmin{i,N−(i−1)}i
γ)(1−λ1γ) ×

× C2+
[(

p2
p1

)α A1
A2

] 1
1−λ1γ C1

C2+
[(

p2
p1

)α A1
A2

] 1
1−λmin{i,N−(i−1)}i

γ
C1





(A.24)

while:

pdf12 =

M1

C2+
[(

p2
p1

)α A1
A2

] 1
1−λ1γ C1

∑N
i=1

Mi

C2+
[(

p2
p1

)α A1
A2

] 1
1−λmin{i,N−(i−1)}i

γ
C1

(A.25)

=
1

∑N
i=1

Mi

M1

C2+
[(

p2
p1

)α A1
A2

] 1
1−λ1γ C1

C2+
[(

p2
p1

)α A1
A2

] 1
1−λmin{i,N−(i−1)}i

γ
C1

(A.26)



But then, since λ1 = max {λi}Ni=1 and
(
p2
p1

)α
A1

A2
> 1, we have that:

N∑

i=1

Mi

M1





[(
p2
p1

)α
A1

A2

] (λmin{i,N−(i−1)}i
−λ1)γ

(1−λmin{i,N−(i−1)}i
γ)(1−λ1γ) ×

× C2+
[(

p2
p1

)α A1
A2

] 1
1−λ1γ C1

C2+
[(

p2
p1

)α A1
A2

] 1
1−λmin{i,N−(i−1)}i

γ
C1





(A.27)

<

N∑

i=1

Mi

M1

C2 +
[(

p2
p1

)α
A1

A2

] 1
1−λ1γ

C1

C2 +
[(

p2
p1

)α
A1

A2

] 1
1−λmin{i,N−(i−1)}i

γ

C1

(A.28)

Therefore, pdf11 > pdf12. Since the distributions are symmetric, we also have pdfN1 > pdfN2.�



II. Nested CES and Free Entry of firms

We now consider a technology with gross complementarities β and 3 skill types:

Y = A1

[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β
. (A.29)

In this model we simultaneously consider the additional extension that firms are perfectly mobile. Firms can

relocate instantaneously and at no cost to another city. To establish itself in a city, a firm must buy a amount k

of land. Given that firms can freely enter and exit cities, we have that in equilibrium, firms must generate zero

profits, i.e.:

AjF (m1j ,m2j ,m3j)−
3∑

i

wijmij − kpj = 0, ∀j ∈ {1, 2} (A.30)

We will assume that there are only two cities, 1 and 2, while city i has a measure Ni of firms, that will be

pin down in equilibrium. Since wi2 =
(
p2
p1

)α
wi1, the system then becomes:





A1


[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

×
× [mγ

31y3 +mγ
11y1]

λ−1



[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

×
× [mγ

32y3 +mγ
12y1]

λ−1


mγ−1

11 =
(
p1
p2

)α
A2m

γ−1
12 (1)

A1

[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

mγ−1
21 =

(
p1
p2

)α
A2

[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

mγ−1
22 (2)

A1


[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

×
× [mγ

31y3 +mγ
11y1]

λ−1


 2

[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

×
× [mγ

32y3 +mγ
12y1]

λ−1


mγ−1

31 =
(
p1
p2

)α
A2m

γ−1
32 (3)

N1mi1 +N2mi2 = Mi, ∀i ∈ {1, 2, 3} (4, 5, 6)
[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1 {

λ [mγ
31y3 +mγ

11y1]
λ

+mγ
21y2

}
=
[
H
N1
− k
]

p1
αγβA1

(7)
[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1 {

λ [mγ
32y3 +mγ

12y1]
λ

+mγ
22y2

}
=
[
H
N2
− k
]

p2
αγβA2

(8)
[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1 {

(1− λγβ) [mγ
31y3 +mγ

11y1]
λ

+ (1− γβ)mγ
21y2

}
= k

A1
p1 (9)

[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1 {

(1− λγβ) [mγ
32y3 +mγ

12y1]
λ

+ (1− γβ)mγ
22y2

}
= k

A2
p2 (10)

(A.31)

From eq. (1) and (3), we have:

[
m11

m31

]γ−1

=

[
m12

m32

]γ−1

m11

m31
=

m12

m32



Since:

m12 =
M1

N2
− N1

N2
m11 (A.32)

m32 =
M3

N2
− N1

N2
m31 (A.33)

Substituting it, we have:

m11

m31
=
M1 −N1m11

M3 −N1m31
(A.34)

Rearranging:

m11 =
M1

M3
m31 (A.35)

Considering a symmetric distribution (so M1 = M3), we have that m11 = m31. Similarly m12 = m32 = M1

N2
−

N1

N2
m11.

From (1) and (2), we have:

[mγ
31y3 +mγ

11y1]
λ−1

mγ−1
11

mγ−1
21

=
[mγ

32y3 +mγ
12y1]

λ−1
mγ−1

12

mγ−1
22

(A.36)

Using the symmetry of the distribution and consequentially that m11 = m31 and m12 = m32, we have:

m
γ(λ−1)
11

(
m11

m21

)γ−1

= m
γ(λ−1)
12

(
m12

m22

)γ−1

(A.37)

Then:

m21 =

(
m11

m12

)λγ−1
γ−1

m22 (A.38)

Then, from (7) and (9), we have:

{
λ [mγ

31y3 +mγ
11y1]

λ
+mγ

21y2

}

{
(1− λγβ) [mγ

31y3 +mγ
11y1]

λ
+ (1− γβ)mγ

21y2

} =

[
H
N1
− k
]

kαγβ
(A.39)

Using symmetry and again that m11 = m31, we have:

mγ
21y2 =

{
(1− λγβ)

[
H

N1kαγβ
− k

kαγβ

]
− λ
}

{
1− (1− γβ)

[
H

N1kαγβ
− k

kαγβ

]} mλγ
11 [y3 + y1]

λ
(A.40)

Similarly, from (8) and (10), we have:

{
λ [mγ

32y3 +mγ
12y1]

λ
+mγ

22y2

}

{
(1− λγβ) [mγ

32y3 +mγ
12y1]

λ
+ (1− γβ)mγ

22y2

} =

[
H
N2
− k
]

kαγβ
(A.41)



Using symmetry and again that m12 = m32, we have:

mγ
22y2 =

{
(1− λγβ)

[
H

N2kαγβ
− k

kαγβ

]
− λ
}

{
1− (1− γβ)

[
H

N2kαγβ
− k

kαγβ

]} mλγ
12 [y3 + y1]

λ
(A.42)

Then, from equaiton (1), we have - again using symmetry:

[
mγ

21y2 +mλγ
11 [y3 + y1]

λ
]β−1

mλγ−1
11 =

(
p1

p2

)α
A2

A1

[
mγ

22y2 +mλγ
12 [y3 + y1]

λ
]β−1

mλγ−1
12 (A.43)

Substituting mγ
21y2 and mγ

22y2, we have:

[
βγ (λ− 1) [(1− α) kN1 −H]

[1− (1− α)βγ] kN1 − (1− βγ)H

]β−1

mλγβ−1
11 =

=

(
p1

p2

)α
A2

A1

[
βγ (λ− 1) [(1− α) kN2 −H]

[1− (1− α)βγ] kN2 − (1− βγ)H

]β−1

mλγβ−1
12

Assuming λ 6= 1, we have:

(
m11

m12

)
=





(
p1

p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H×

× (1−α)kN2−H
(1−α)kN1−H



β−1




1
λγβ−1

(A.44)

Substituting m12 = M1

N2
− N1

N2
m11, we have:

m11 =





(
p1
p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H



β−1




1
λγβ−1


N2 +N1





(
p1
p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H



β−1




1
λγβ−1




M1 (A.45)

Since the distribution is symmetric, we have:

m31 =





(
p1
p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H



β−1




1
λγβ−1


N2 +N1





(
p1
p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H



β−1




1
λγβ−1




M3 (A.46)

Finally, from our expression for mγ
21y2, we have:



mγ
21y2 =

{
(1−λγβ)[H−N1k]−λN1kαγβ

N1kαγβ

}

{
N1kαγβ−(1−γβ)[H−N1k]

N1kαγβ

} mλγ
11 [y3 + y1]

λ
(A.47)

Rearranging it, we have:

m21 =

[
H (1− βλγ)− [1− (1− α)βλγ] kN1

[1− (1− α)βγ] kN1 − (1− βγ)H

] 1
γ

mλ
11

(
[y3 + y1]

λ

y2

) 1
γ

(A.48)

Substituting m11, we have:

m21 =





[
H(1−βλγ)−[1−(1−α)βλγ]kN1

[1−(1−α)βγ]kN1−(1−βγ)H

] 1
γ
(

[y3+y1]λ

y2

) 1
γ ×

×


(
p1
p2

)α A2
A1


[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H


β−1


λ

λγβ−1

N2+N1


(
p1
p2

)α A2
A1


[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H


β−1


1

λγβ−1


λ (M1)

λ





(A.49)

Then, also notice that:

m12 =
M1

N2 +N1





(
p1
p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H



β−1




1
λγβ−1

(A.50)

and:

m32 =
M3

N2 +N1





(
p1
p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H



β−1




1
λγβ−1




(A.51)

and

m22 =





[
H(1−βλγ)−[1−(1−α)βλγ]kN2

[1−(1−α)βγ]kN2−(1−βγ)H

] 1
γ
(

[y3+y1]λ

y2

) 1
γ ×

×


 M1

N2+N1

{(
p1
p2

)α A2
A1

[
[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H×

(1−α)kN2−H
(1−α)kN1−H

]β−1
} 1
λγβ−1




λ





(A.52)

Proposition A. 1 If λ > 1, λγ < 1, and λγβ < 1, there is no equilibrium in which A2 > A1, and mi1 ≥ mi2.

Assume A2 > A1. Before we continue, we prove the following Lemma:

Lemma A. 1 If m11 > m12, then p1 > p2, N2 > N1, and m21 > m22



Proof. Going back to the system, we have:





A1


[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

×
× [mγ

31y3 +mγ
11y1]

λ−1



[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

×
× [mγ

32y3 +mγ
12y1]

λ−1


mγ−1

11 =
(
p1
p2

)α
A2m

γ−1
12 (1′)

A1

[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

mγ−1
21 =

(
p1
p2

)α
A2

[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

mγ−1
22 (2′)

A1


[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

×
× [mγ

31y3 +mγ
11y1]

λ−1



[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

×
× [mγ

32y3 +mγ
12y1]

λ−1


mγ−1

31 =
(
p1
p2

)α
A2m

γ−1
32 (3′)

N1mi1 +N2mi2 = Mi, ∀i ∈ {1, 2, 3} (4′, 5′, 6′)
[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1 {

λ [mγ
31y3 +mγ

11y1]
λ

+mγ
21y2

}
=
[
H
N1
− k
]

p1
αγβA1

(7′)
[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1 {

λ [mγ
32y3 +mγ

12y1]
λ

+mγ
22y2

}
=
[
H
N2
− k
]

p2
αγβA2

(8′)
[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1 {

(1− λγβ) [mγ
31y3 +mγ

11y1]
λ

+ (1− γβ)mγ
21y2

}
= k

A1
p1 (9′)

[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1 {

(1− λγβ) [mγ
32y3 +mγ

12y1]
λ

+ (1− γβ)mγ
22y2

}
= k

A2
p2 (10′)

(A.53)

From the last two equations, we have:




[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

×
×
{

(1− λγβ) [mγ
31y3 +mγ

11y1]
λ

+ (1− γβ)mγ
21y2

}


 p2
p1
A1

A2
= k

A2
p2




[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

×
×
{

(1− λγβ) [mγ
32y3 +mγ

12y1]
λ

+ (1− γβ)mγ
22y2

}


 = k

A2
p2

(A.54)

Equating this two expressions, we have:







[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

×
×
{

(1− λγβ) [mγ
31y3 +mγ

11y1]
λ

+ (1− γβ)mγ
21y2

}


 p2
p1
A1

A2

−




[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

×
×
{

(1− λγβ) [mγ
32y3 +mγ

12y1]
λ

+ (1− γβ)mγ
22y2

}







= 0 (A.55)

since M1 = M3, we have that m31 = m11 and m32 = m12. Based on these results, we have:




[
mγ

21y2 +mλγ
11 [y3 + y1]

λ
]β−1 {

(1− λγβ)mλγ
11 [y3 + y1]

λ
+ (1− γβ)mγ

21y2

}
p2
p1
A1

A2

−
[
mγ

22y2 +mλγ
12 [y3 + y1]

λ
]β−1 {

(1− λγβ)mλγ
12 [y3 + y1]

λ
+ (1− γβ)mγ

22y2

}


 = 0 (A.56)

Then, from equation (1), we have - again using symmetry:



[
mγ

21y2 +mλγ
11 [y3 + y1]

λ
]β−1

=

(
p1

p2

)α
A2

A1

[
mγ

22y2 +mλγ
12 [y3 + y1]

λ
]β−1 mλγ−1

12

mλγ−1
11

(A.57)

Substituting it back, we have:

[
mγ

22y2 +mλγ
12 [y3 + y1]

λ
]β−1




(1− λγβ) [y3 + y1]
λ

[(
p2
p1

)1−α
m11 −m12

]
mλγ−1

12

+ (1− γβ) y2

[(
p2
p1

)1−α (
m12

m11

)λγ−1

mγ
21 −mγ

22

]


 = 0 (F) (A.58)

Since:

(
m11

m12

)λγ−1

=

(
m21

m22

)γ−1

⇓
(
m12

m11

)λγ−1

=

(
m22

m21

)γ−1

we have:

[
mγ

22y2 +mλγ
12 [y3 + y1]

λ
]β−1





(1− λγβ) [y3 + y1]
λ

[(
p2
p1

)1−α
m11

m12
− 1

]
mλγ

12

+ (1− γβ) y2

[(
p2
p1

)1−α
m21

m22
− 1

]
mγ

22





= 0 (A.59)

Since:

m21

m22
=

(
m11

m12

)λγ−1
γ−1

(A.60)

we have:

[
mγ

22y2 +mλγ
12 [y3 + y1]

λ
]β−1





(1− λγβ) [y3 + y1]
λ

[(
p2
p1

)1−α
m11

m12
− 1

]
mλγ

12

(1− γβ) y2

[(
p2
p1

)1−α (
m11

m12

)λγ−1
γ−1 − 1

]
mγ

22





= 0 (A.61)

Assuming that λγβ < 1, we have that the only terms that can be negative are the ones inside the squared brackets

inside the curly brackets.

Since λγ−1
γ−1 ∈ (0, 1) :

[(
p2

p1

)1−α
m11

m12
− 1

]
−
[(

p2

p1

)1−α(
m11

m12

)λγ−1
γ−1

− 1

]
=

=

(
p2

p1

)1−α
m11

m12


1−

(
m12

m11

) γ(λ−1)
1−γ






Since γ(λ−1)
1−γ ∈ (0, 1), the sign will depend on m12

m11
. Since

m12

m11
< 1⇒

[(
p2

p1

)1−α
m11

m12
− 1

]
>

[(
p2

p1

)1−α(
m11

m12

)λγ−1
γ−1

− 1

]
.

In order to keep the equality, we must have:

(
p2

p1

)1−α
m11

m12
− 1 > 0

m11

m12
>

(
p1

p2

)1−α

and

(
p2

p1

)1−α(
m11

m12

)λγ−1
γ−1

− 1 < 0

(
m11

m12

) 1−λγ
1−γ

<

(
p1

p2

)1−α

since 1−λγ
1−γ ∈ (0, 1) and α ∈ (0, 1), we have that:

(
p1

p2

)1−α

∈
((

m11

m12

) 1−λγ
1−γ

,
m11

m12

)
(A.62)

since m11

m12
> 1, we have that p1 > p2.

We also showed earlier that:

m21

m22
=

(
m11

m12

) 1−λγ
1−γ

(A.63)

since m11

m12
> 1, we have that m21 > m22.

Finally, from equations (7′) and (8′), we have:

N1 = H{
αγβA1
p1

[
mγ21y2+[mγ31y3+mγ11y1]

λ
]β−1{

λ[mγ31y3+mγ11y1]
λ

+mγ21y2
}

+k

}
N2 = H{

αγβA2
p2

[
mγ22y2+[mγ32y3+mγ12y1]

λ
]β−1{

λ[mγ32y3+mγ12y1]
λ

+mγ22y2
}

+k

} (A.64)

Since, from (9′) and (10′):

A1

p1
=

k



[
mγ

21y2 + [mγ
31y3 +mγ

11y1]
λ
]β−1

×
×
{

(1− βγ)mγ
21y2 + (1− λγβ) [mγ

31y3 +mγ
11y1]

λ
}




A2

p2
=

k



[
mγ

22y2 + [mγ
32y3 +mγ

12y1]
λ
]β−1

×
×
{

(1− βγ)mγ
22y2 + (1− λγβ) [mγ

32y3 +mγ
12y1]

λ
}






Substituting it back, we have:

N1 =
H

k

(1− βγ)mγ
21y2 + (1− λγβ)mλγ

11 [y3 + y1]
λ

[1− (1− α)βγ]mγ
21y2 + [1− (1− α)λγβ]mλγ

11 [y3 + y1]
λ

(A.65)

and

N2 =
H

k

(1− βγ)mγ
22y2 + (1− λγβ)mλγ

12 [y3 + y1]
λ

[1− (1− α)βγ]mγ
22y2 + [1− (1− α)λγβ]mλγ

12 [y3 + y1]
λ

(A.66)

Then:

N1

N2
= 1 +

αβγy2 [y3 + y1]
λ

(λ− 1)

[(
m12

m11

) (λ−1)γ
1−γ − 1

]
mγ

22m
λγ
11




[1− (1− α)βγ] (1− βγ) (y2)
2
mγ

22m
γ
21

+ [1− (1− α)βγ] (1− λγβ) y2 [y3 + y1]
λ
mγ

21m
λγ
12

+ [1− (1− α)λγβ] (1− βγ) [y3 + y1]
λ
y2m

γ
22m

λγ
11

+ [1− (1− α)λγβ] (1− λγβ) [y3 + y1]
2λ
mλγ

11m
λγ
12




(FF) (A.67)

Since m12

m11
< 1, we have that N1

N2
< 1⇒ N1 < N2.

Then, back in the system, rearranging it, we have:









(
M1

N2+N1

{(
p1
p2

)α A2
A1
Zβ−1

} 1
λγβ−1

)λ (
[y3+y1]λ

y2

) 1
γ ×

×




N1





[
H(1−βλγ)−[1−(1−α)βλγ]kN1

[1−(1−α)βγ]kN1−(1−βγ)H

] 1
γ ×

×
{(

p1
p2

)α
A2

A1
Zβ−1

} λ
λγβ−1





+N2

[
H(1−βλγ)−[1−(1−α)βλγ]kN2

[1−(1−α)βγ]kN2−(1−βγ)H

] 1
γ








= M2 (1′′)



{(

p1
p2

)α
A2

A1
Zβ−1

} λ−1
1−λγβ ×

×Z γ−1
γ


 = 1 (2′′)




[
[H−(1−α)kN1]βγ(λ−1)

H(1−βγ)−[1−(1−α)βγ]kN1

]β−1 [
(λ−1)

H(1−βγ)−[1−(1−α)βγ]kN1

]
×

×




{(
p1
p2

)α A2
A1
Zβ−1

} 1
λγβ−1[

N2+N1

{(
p1
p2

)α A2
A1
Zβ−1

} 1
λγβ−1

]M1



λγβ

[y3 + y1]
λβ


 = 1

N1

p1
αγβA1

(3′′)




[
(λ−1)

H(1−βγ)−[1−(1−α)βγ]kN2

] [
[H−(1−α)kN2]βγ(λ−1)

H(1−βγ)−[1−(1−α)βγ]kN2

]β−1

×

×
(

M1

N2+N1

{(
p1
p2

)α A2
A1
Zβ−1

} 1
λγβ−1

)λγβ
[y3 + y1]

λβ


 = 1

N2

p2
αγβA2

(4′′)

(A.68)

where Z = [1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H ×

(1−α)kN2−H
(1−α)kN1−H

Then, from (3′′) and (4′′), we have:





(
m11

m12

)λγβ [
H−(1−α)kN1

H−(1−α)kN2

]β−1

×
[
H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1

]β




N1

N2
=
A2

A1

p1

p2
(A.69)



once

m11

m12
=





(
p2
p1

)α
A1

A2

[
(1−βγ)H−[1−(1−α)βγ]kN2

(1−βγ)H−[1−(1−α)βγ]kN1

]β−1

×

×
[
H−(1−α)kN1

H−(1−α)kN2

]β−1





1
1−λγβ

(A.70)

Substituting it back, we have:







H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1

×H−(1−α)kN1

H−(1−α)kN2




β(1−λγ)
1−λγβ

×
[
H−(1−α)kN2

H−(1−α)kN1

]



N1

N2
=

(
A2

A1

) 1
1−λγβ

(
p1

p2

) 1−(1−α)λγβ
1−λγβ

(FFF) (A.71)

Notice that:




H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1
×

×H−(1−α)kN1

H−(1−α)kN2


− 1 =

Hkα (N1 −N2)



[H (1− βγ)− [1− (1− α)βγ] kN1]×
× [H − (1− α) kN2]





(A.72)

Since:

m21 =

[
−H (1− βλγ)− [1− (1− α)βλγ] kN1

H (1− βγ)− [1− (1− α)βγ] kN1

] 1
γ

mλ
11

(
[y3 + y1]

λ

y2

) 1
γ

(A.73)

and m21 > 0, we must have that:

−H (1− βλγ)− [1− (1− α)βλγ] kN1

H (1− βγ)− [1− (1− α)βγ] kN1
> 0 (A.74)

Since H (1− βλγ)− [1− (1− α)βλγ] kN1 is decreasing in λ, we must have:

H (1− βγ)− [1− (1− α)βγ] kN1 > 0 (A.75)

and

H (1− βλγ)− [1− (1− α)βλγ] kN1 < 0 (A.76)

but them, we have that:





[H (1− βγ)− [1− (1− α)βγ] kN1]×
× [H − (1− α) kN2]



 > 0 (A.77)

Since N1 < N2, this implies that: 


H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1

×H−(1−α)kN1

H−(1−α)kN2


 < 1 (A.78)



Then, from (FFF), we have:




H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1

×H−(1−α)kN1

H−(1−α)kN2




β(1−λγ)
1−λγβ

< 1

[
H − (1− α) kN2

H − (1− α) kN1

]
< 1

N1

N2
< 1

Therefore LHS < 1. We also know that
(
p1
p2

) 1−(1−α)λγβ
1−λγβ

> 1. Given A2 > A1, RHS > 1 and we have a

contradiction

In order to complete our proof, assume that m11

m12
= 1⇒ m11 = m12. Given that m21

m22
=
(
m11

m12

) 1−λγ
1−γ

, we have

that m21 = m22. Then, from (FF) we have N1 = N2 and from (F) we have p1 = p2. But, combining these

results and (FFF), we again have a contradiction, once LHS = 1 while RHS¿1 once A2 > A1.

Corollary A. 1 There is no equilibrium in which A1 > A2 and mi2 > mi1, ∀i ∈ {1, 2, 3} .

Theorem A. 1 City Size and TFP. Let A1 > A2, β > 1, λγβ < 1, and γ < 1. Then the more productive city is

larger, S1 > S2.

Proof. Before we start, define:

Z =

(
p1

p2

)α
A2

A1




[1−(1−α)βγ]kN1−(1−βγ)H
[1−(1−α)βγ]kN2−(1−βγ)H

× (1−α)kN2−H
(1−α)kN1−H



β−1

(A.79)

Notice that:
m11

m12
= Z

1
λγβ−1 (A.80)

Since A1 > A2, from Corollary 1 we have m11 > m12. From Lemma 1 and λγβ < 1, we have that Z < 1.

Notice that:

S1 = N1 (2 ∗m11 +m21)

S1 = N2




2 ∗ N1

N2

Z
1

λγβ−1[
N2+N1Z

1
λγβ−1

]M1

+N1

N2





[
H(1−βλγ)−[1−(1−α)βλγ]kN1

[1−(1−α)βγ]kN1−(1−βγ)H

] 1
γ

×
(

[y3+y1]λ

y2

) 1
γ


 Z

1
λγβ−1[

N2+N1Z
1

λγβ−1

]M1



λ










while:

S2 = N2 (2 ∗m12 +m22)

= N2




2 ∗ M1

N2+N1Z
1

λγβ−1

+

{[
H(1−βλγ)−[1−(1−α)βλγ]kN2

[1−(1−α)βγ]kN2−(1−βγ)H

] 1
γ
(

[y3+y1]λ

y2

) 1
γ

(
M1

N2+N1Z
1

λγβ−1

)λ}




then:

S2 − S1 = N2





2

[
1−N1

N2
Z

1
λγβ−1

]
M1

N2+N1Z
1

λγβ−1
+

+




[
1− N1

N2
Z

λ
λγβ−1

] [
H(1−βλγ)−[1−(1−α)βλγ]kN2

[1−(1−α)βγ]kN2−(1−βγ)H

] 1
γ ×

×
(

[y3+y1]λ

y2

) 1
γ

(
M1

N2+N1Z
1

λγβ−1

)λ








(A.81)

Since: 



[
H−(1−α)kN1

H−(1−α)kN2

]β−1

×
[
H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1

]β




Z

λγβ
λγβ−1 =

N2

N1

p1

p2

A2

A1
(A.82)

Then, from
(3′′)
(4′′) , we have:

N1

N2
=

p1
p2
A2

A1[
H−(1−α)kN1

H−(1−α)kN2

]β−1 [
H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1

]β
Z

λγβ
λγβ−1

(A.83)

so:

N1

N2
Z

1
λγβ−1 =

p1
p2
A2

A1[
H−(1−α)kN1

H−(1−α)kN2

]β−1 [
H(1−βγ)−[1−(1−α)βγ]kN2

H(1−βγ)−[1−(1−α)βγ]kN1

]β
(

1

Z

)

=

(
p1

p2

)1−α [
H (1− βγ)− [1− (1− α)βγ] kN1

H (1− βγ)− [1− (1− α)βγ] kN2

]
> 1

Therefore, since N1

N2
Z

1
λγβ−1 > 1, we have that

[
1− N1

N2
Z

1
λγβ−1

]
< 0. Since λ > 1 and N1

N2
Z

λ
λγβ−1 .N1

N2
Z

1
λγβ−1 ,

we also have that
[
1− N1

N2
Z

λ
λγβ−1

]
< 0. Therefore:

S2 − S1 < 0 (A.84)

and we have that the city with the highest TFP is also the largest city.

Theorem A. 2 Thick tails. Let A1 > A2, β > 1, λ > 1, and λγβ < 1, the skill distribution in the larger city has

thicker tails.

Proof. Consider the distributions, denoted by pdfij :



pdf11 =
N1m11

S1
=

Z
1

λγβ−1[
N2+N1Z

1
λγβ−1

]M1




2 ∗ Z
1

λγβ−1[
N2+N1Z

1
λγβ−1

]M1

+





[
H(1−βλγ)−[1−(1−α)βλγ]kN1

[1−(1−α)βγ]kN1−(1−βγ)H

] 1
γ

×
(

[y3+y1]λ

y2

) 1
γ


 Z

1
λγβ−1[

N2+N1Z
1

λγβ−1

]M1



λ








(A.85)

pdf12 =

M1

N2+N1Z
1

λγβ−1


2 ∗ M1

N2+N1Z
1

λγβ−1

+





[
H(1−βλγ)−[1−(1−α)βλγ]kN2

[1−(1−α)βγ]kN2−(1−βγ)H

] 1
γ

×
(

[y3+y1]λ

y2

) 1
γ

(
M1

N2+N1Z
1

λγβ−1

)λ








(A.86)

Since:

(
M1

N2 +N1Z
1

λγβ−1

)λ(
[y3 + y1]

λ

y2

) 1
γ

=
M2


N1

[
H(1−βλγ)−[1−(1−α)βλγ]kN1

[1−(1−α)βγ]kN1−(1−βγ)H

] 1
γ

Z
λ

λγβ−1

+N2

[
H(1−βλγ)−[1−(1−α)βλγ]kN2

[1−(1−α)βγ]kN2−(1−βγ)H

] 1
γ




we have:

pdf11 =
Z

1
λγβ−1M1



2Z
1

λγβ−1M1

+
M2

[
N2+N1Z

1
λγβ−1

]
N1Z

λ
λγβ−1 +N2


H(1−βλγ)−[1−(1−α)βλγ]kN2

[1−(1−α)βγ]kN2−(1−βγ)H

× [1−(1−α)βγ]kN1−(1−βγ)H
H(1−βλγ)−[1−(1−α)βλγ]kN1


1
γ



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and
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Since Z < 1 ⇒ Z
1

λγβ−1 > 1, we have that pdf11
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> 1. Since the distribution is symmetric, we also have that
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III. Agglomeration Externalities

Since Marshall (1890), there is a broad consensus in the economics literature that the principal explanation

for the existence of cities is the presence of agglomeration externalities (see Duranton and Puga, 2004 for a

theoretical survey, and Rosenthal and Strange, 2004, and Combes, Duranton, Gobillon, Puga, and Roux, 2009

for the empirical evidence). Due to economies of scale and network effects, firms that cluster together may see

a decline in the costs of production, due to the presence of competing multiple suppliers, greater specialization

and the division of labor. Even direct competitors in the same sector may benefit because the cluster of firms in

the same city attracts more suppliers and customers than a single firm in isolation. Alternatively, there may be

demand-side agglomeration externalities due to the variety of goods and services provided. Of course, the size of

the city is limited by diseconomies of agglomeration, for example congestion, and the limited availability of land

which drives up the price of housing and office space. The latter is captured by the fixed amount of land in our

baseline model above.

Because the key feature of agglomeration externalities is city size, we will assume that TFP is determined

endogenously and increasing in city size Sj : Aj = A(Sj), where A′(S) > 0. Cities are ex ante identical and there

are no initial differences in TFP across different cities.

We analyze the case of Extreme-Skill Complementarities with free mobility of firms in a two-city model. The

next Theorem characterizes the equilibrium allocation of skilled workers and of firms across cities. Firms in larger

cities are more productive due to higher agglomeration externalities. Also real estate prices are higher. This may

seem obvious, but as in the results on city size with exogenous TFP, this hinges on the fact that land supply is

equal (or at least not too different). Once endogenous TFP due to agglomeration is higher, labor productivity is

higher and therefore labor demand. As a result, the representative firm is larger and more firms enter. Finally,

the same logic that explains the emergence of thick tails applies exactly as it does for the case of exogenous TFP.

Theorem A. 3 Given endogenous agglomeration externalities and given λ > 1 and λγ < 1, and provided cities

of different size exist, the larger city has:

• higher TFP;

• higher real estate prices;

• more and larger firms;

• thicker tails in the skill distribution.

Proof. See below.

Observe that with endogenous agglomeration externalities we can readily extend the proofs to the case of the

technology with Top-Skill Complementarity.

An open question remains whether there actually exist equilibria with endogenous agglomeration externalities

where cities are ex post heterogeneous, despite being ex ante identical. Of course, if there is heterogeneity in



equilibrium city size, we expect there to be multiple equilibria since there is no ex ante advantage to any city ex

ante: one equilibrium where city 1 is large and city 2 is small, another equilibrium where city 2 is large and city

1 is small, and finally an intermediate equilibrium where cities are identical.

For the case of a CES production technology, we show conditions under which cities are different in size,

despite the ex ante identical technologies and agglomeration externalities. Mobility of workers and free entry of

firms induces wages and housing prices to adjust such that workers are indifferent between locating in either city.

When there are sufficiently large economies of scale of agglomeration, i.e. when the function A is sufficiently

convex, we obtain that cities differ in equilibrium. We establish this result for the exponential function in

conjunction with the CES technology.

Theorem A. 4 Given the CES technology and endogenous agglomeration externalities of the form A(S) =

eψS , ψ > 0, cities of different size exist, provided ψ > 2(1−γ(1−α))

M(1−α)
.

Proof. See below.

This result indicates that agglomeration externalities in production alone can generate the coexistence of

cities of different size and productivity. The qualifier requires that for a given size of the labor force M , the

externality must be strong enough. If ψ is high enough, the function A = eψS will be convex enough and as a

result, there will be a large enough agglomeration effect that generates the existence of multiple equilibria.

Interestingly, a commonly assumed functional form in partial equilibrium, A(S) = Sφ, does not generate

heterogeneous cities in conjunction with the CES technology. This is true even if A is convex (φ > 1) as shown

in the following Corollary. The reason is that already under CES, there is proportionality in the equilibrium

demand for labor (proportional across skills), and an externality of this form lifts each city’s productivity, but

again proportionally. As a result homotheticity, the size of the city is fully governed by the decreasing returns at

each skill level. The returns to scale can never be sufficiently strong.

Corollary A. 2 Given the CES technology and endogenous agglomeration externalities of the form A(S) =

Sφ, φ > 0, generically cities are of identical size.

Proof. See below.

Ideally we would like to solve the model and prove that multiple equilibria exist also in the presence of extreme-

skill complementarities. Unfortunately, that problem is quite a bit more challenging due to the dimensionality of

the skill distribution. Not surprisingly, under CES, the proportionality of labor demand implies that distributions

are identical across cities. As a result, we only need to solve for the endogenous city size, and not each skill level

individually. While we cannot prove any general results, we do conjecture that the nature of the results extends

to the non-CES case.



Proofs Agglomeration Externalities

Going back to the system of five equations in the preliminaries, we can now substitute Aj for A (Sj). Denote by

M = S1 + S2 =
∑
iMi as the economy wide population. Then we will write S2 = M − S1.

From dividing the first by the second and rearranging, we obtain:





[1− λγ (1− α)]

[(
p1
p2

)α A(M−S1)
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] λγ
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
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[
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)γ
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]λ

=





N2

N1

p1
p2

A(M−S1)
A(S1) [1− γ (1− α)]

− [1− γ (1− α)]

[(
p1
p2

)α A(M−S1)
A(S1)

] γ
γ−1








M2

N2 +N1

[(
p1
p2

)α A(M−S1)
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] 1
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
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γ

y2,

and from dividing the third by the fourth we have:



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)α A(M−S1)
A(S1)

] λγ
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A(S1)
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M3

N2 +N1
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p2
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A(S1)

] 1
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[
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(
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M3

)γ
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=





(1− γ) p1p2
A(M−S1)
A(S1)

− (1− γ)
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p1
p2

)α A(M−S1)
A(S1)

] γ
γ−1



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Jointly, these two equations give us

[1− λγ (1− α)]

(1− λγ)

{[(
p1
p2

)α A(M−S1)
A(S1)

] λγ
λγ−1

− N2

N1

p1
p2

A(M−S1)
A(S1)

}
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p1
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)α A(M−S1)
A(S1)
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A(M−S1)
A(S1)

} =
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(1− γ)

{
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)α A(M−S1)
A(S1)
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A(M−S1)
A(S1) −
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)α A(M−S1)
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} (F)
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We can now establish the following preliminary results. First, cities are not equal in the number of firms Nj .

Lemma A. 2 If λ > 1 and λγ < 1, then N2

N1
6= 1, and Z 6= 1.

Proof. Assume N2

N1
= 1, then from (F) we have:

[1− λγ (1− α)]

(1− λγ)
=

[1− γ (1− α)]

(1− γ)
(A.91)

which is a contradiction, since λ > 1⇒ [1−λγ(1−α)]
(1−λγ) > [1−γ(1−α)]

(1−γ) .



Rewritting the equality (F) above, we obtain:

[1− λγ (1− α)]

(1− λγ)

{[(
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Then, if Z = 1, we have

[(
p1
p2

)α A(M−S1)
A(S1)

] λγ
λγ−1

=

[(
p1
p2

)α A(M−S1)
A(S1)

] γ
γ−1

= 1. Therefore, we have:

[1− λγ (1− α)]

(1− λγ)

{
1− N2

N1

p1
p2

A(M−S1)
A(S1)

}

{
1− N2

N1

p1
p2

A(M−S1)
A(S1)

} =
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{
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}
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A(S1)

}

[1− λγ (1− α)]

(1− λγ)
=

[1− γ (1− α)]

(1− γ)

which as we saw before, it is a contradiction.

Given Z, we can now establish the main relations between the number of firms Nj , city size Sj , housing

prices pj and TFP A(Sj).

Lemma A. 3 If Z < 1, then:

1. N1 > N2;

2. S1 > S2;

3. A1 > A2;

4. p1 > p2.

With opposite inequalities if Z > 1.

Proof. We establish each of the items in turn

1. Rearranging equality (F), we get:
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and further simplifying:
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Then:

d

dN2

N1
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If Z < 1, we have: d

d
N2
N1

(LHS) > 0. Then, since [1−λγ(1−α)]
(1−λγ) > [1−γ(1−α)]

(1−γ) , if Z < 1 we must have N2

N1
< 1.

Similarly, if Z > 1, we have: d

d
N2
N1

(LHS) < 0. Then, since [1−λγ(1−α)]
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2. From the fifth equation, we have:
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If Z < 1, from the previous Lemma we know that N2

N1
< 1. Since:
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γ
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We have:
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M

2
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The same logic establishes the opposite when Z > 1.

3. From the previous lemma, if Z < 1, we have that S1 > S2. Since A′ (·) > 0, A(S1) > A
(
M − S1

)
= A2.

4. But then, from (F):
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
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Since Z < 1, we showed that N1

N2
> 1. Then:



p1

p2
>
N1

N2

A (S1)

A
(
M − S1

)Z γ
γ−1 . (A.99)

Similarly for Z > 1.

Next, we establish the result for thicker tails for the case of endogenous TFP from agglomeration externalities.

Lemma A. 4 Given λ > 1 and λγ < 1, the larger city has thicker tails.

Proof. If Z < 1, from Lemma A.3 we know that city 1 is larger than city 2, and that A1 > A2. Therefore we

can apply Theorem 2: city 1 is larger an has thicker tails. Instead, if Z > 1, we know that city 2 is larger than

city 1, and that A1 < A2. Now we can define Z ′ = 1/Z (or relabel the cities) and again apply Theorem 2: city 2

is larger and has thicker tails.

Now our main result immediately follows from Lemmas A.2, A.3, and A.4:

Theorem A.3 Given endogenous agglomeration externalities and given λ > 1 and λγ < 1, and provided cities

of different size exist, the larger city has:

We now establish the proof of Theorem A.4

Theorem A.4 Given the CES technology and endogenous agglomeration externalities of the form A(S) =

eψS , ψ > 0, cities of different size exist, provided ψ > 2(1−γ(1−α))

M(1−α)
.

Proof. In the case of CES (λ = 1) we can write the system of 9 equilibrium equations as:
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αγA(S1)

{(m12)
γ
y1 + (m32)

γ
y3 + (m22)

γ
y2} =

[
H
N2
− k
]

p2
αγA(S2)[(

p1
p2

)α
A(S2)
A(S1)

] γ
γ−1 {(m12)

γ
y1 + (m32)

γ
y3 + (m22)

γ
y2} = k

(1−γ)A(S1)p1

{(m12)
γ
y1 + (m32)

γ
y3 + (m22)

γ
y2} = k

(1−γ)A(S2)p2

S1 =
[(

p1
p2

)α
A(S2)
A(S1)

] 1
γ−1

[m12 +m22 +m32]N1

S2 = [m12 +m22 +m32]N2

(A.100)

From eqs. (6) and (7), we obtain:

[(
p1
p2

)α
A(S2)
A(S1)

] γ
γ−1 {(m12)

γ
y1 + (m32)

γ
y3 + (m22)

γ
y2}

{(m12)
γ
y1 + (m32)

γ
y3 + (m22)

γ
y2}

=
kp1

(1− γ)A (S1)
× (1− γ)A (S2)

kp2
, (A.101)



and after rearranging:

p1

p2
=

(
A (S1)

A (S2)

) 1
1−γ(1−α)

(A.102)

From (4) and (6), and from (5) and (7) we have:

N1 =
H[

1 + αγ
(1−γ)

]
k

= N2 (A.103)

Substituting (1) , (2) , and (3) into (8), and using the price ratio p1
p2

we get:

S1 =





(
A(S1)
A(S2)

) (1−α)
1−γ(1−α)

1 +
(
A(S1)
A(S2)

) (1−α)
1−γ(1−α)




M and S2 =





1

1 +
(
A(S1)
A(S2)

) (1−α)
1−γ(1−α)




M (A.104)

Then:

S1

S2
=

(
A (S1)

A (S2)

) (1−α)
1−γ(1−α)

(A.105)

Since S2 = M − S1, we have:

S1

M − S1

=

(
A (S1)

A
(
M − S1

)
) (1−α)

1−γ(1−α)

(A.106)

Now consider the case where A(S) = eψS and denote the exponent on the RHS term by K = ψ(1−α)
1−γ(1−α) and

observe that it is positive. Then the equilibrium condition is:

S1

M − S1

=
(
e2S1−M

)K

log

(
S1

M − S1

)
= K

(
2S1 −M

)

First, there is always a symmetric equilibrium S1 = M
2 . Substituting S1 = M

2 gives 0 both on the LHS and the

RHS.

Next, we show that there are also two asymmetric equilibria, one where S1 >
M
2 > S2 and the mirror image

with S2 > M
2 > S1. To see this, observe that the RHS is linear with bounded support on [0,M ] and takes

values between −KM and KM . The LHS takes values between −∞ and +∞: at S1 = 0, the LHS is equal to

log 0 = −∞ and at S1 = M , the LHS is equal to log∞ = +∞. The slope of the LHS is positive and given by

M

S1(M − S1)
. (A.107)

We know that there is an intersection at S1 = M
2 , and therefore, given the behavior at S1 = 0 and ∞ and

continuity of both LHS and RHS, there is are at least two more intersections provided the slope at S1 = M
2 is



−KM

K
(
2S1 −M

)

log
(

S1

M−S1

)

S1
M
2

Slarge
1

Ssmall
1 M

−KM

K
(
2S1 −M

)

log
(

S1

M−S1

)

S1
M
2 M

Figure 15: Proof of Theorem A.4: A. Multiple equilibria with cities of different sizes exist when K is
large enough; B. a unique equilibrium exists with identical cities exists when K is small.

flatter than the slope of the RHS, i.e. provided:

4

M
< 2K or ψ >

2 (1− γ (1− α))

M(1− α)
. (A.108)

The logic is illustrated in Figure 15.

Corollary A.2 Given the CES technology and endogenous agglomeration externalities of the form A(S) = Sφ, φ >

1, generically cities are of identical size.

Proof. Now the equilibrium condition can be written as:

S1

M − S1

=

(
S1

M − S1

) φ(1−α)
1−γ(1−α)

. (A.109)

which has a unique solution S1 = M − S1 provided φ(1−α)
1−γ(1−α) − 1 6= 0. When φ(1−α)

1−γ(1−α) − 1 = 0, there is

indeterminacy in the size of both cities and S1 ∈ [0,M ]. However, this configuration of parameters is non-

generic, therefore generically S1 = M
2 and cities are identical.


