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I. General Technology: N skill types

The firm’s problem with N skills is given by:

N
m (mlj, .‘.,ij) = AJF (mlj, ...,ij) - Zwijmij
i=1

Then, the system becomes:

D2

A Fy(myg,..,myy) = <m) Ao Fy (my2, ..., mn2) ,

N
Yoicq Fi(mag, ..omy1) mi = H2

Vie{l,..

aAq
Yo Fr (mag, ooy miva) mag = H_ B
Cimi1 + Comye = M;, Vi € {1, ,N}

Now, define F'(+) as (assuming without loss that N

A1
F ()= (miyy1 + myyn)™" + (mglyQ + m7v71,13/N71)

Substituting this back into the system, we have:

Amin{i,N—(i—1)}; ~1
Al(m?,lyi'*'m (7‘,—1),1yN7(i—1)) {LN=G=D) "y

i

5 _
N— 1

5 ~ Amin{i, N—(i—1)}; ~1 _~—1
Az (mi-,ZyierN—(i—1),2yN—(i—1)) ' LT

N

> im1 Amin{i, N=(i-1)}, (mZ1yi + m?\f—(i—l),lyl\f*(ifl)
N

> im1 Amin{i,N—(i-1)}, (ngyi + m},(i,l)gyz\/—(i—n

Vie{l,..,N}

Cimgr + Camyp = M;,

is even):

A2

(e}
b1 ;
(E) y Vi € {1,7N}
Amin{i,N—(i—1)}; —1
’ ) Y o, — P1
) m; Yi = Ha/ivAl
Amin{i,N—(i—1)}; —1
’ * Y o, — P2
) m; oy = HOZMA2

From the first N equations, dividing the expressions for ¢ and N — (i — 1), we have:

M;

mi1 =
My_@-1)

N
MN—(i—1),1, foT i € {1, e }

2

7N}

A
¥ v
+ .t (mglyg +m%+1,1y%+1)

(A1)
(A.2)
¥ (A.3)

(1), (N)

(N+1)

(N +2)

(N+3),...,(2N +2)
(A4)
(A.5)

Considering a symmetric distribution (so M; = My_(i—1), for i € {1, o %}), we have that m; 1 = my__1)1-

Similarly mie = my_(i—1)2 = %

L — %—;m“, for i € {1,.

N
o f

From equations for ¢ and j for ¢ # j from the first N equations, we have:



~y—1
i . N
a2 } , for i € {1,...,} (A.6)
MN—(i—1),2 2

] -
MmN —(i—1),1

Using equations (N + 3) to (2N + 2), we have:

M; . N
MN_(i—1),1, for i € ¢ 1,. 0}

mig = ————— .
' My _(i-1)
M}), we have that m; 1 = my_—1),1-

Considering a symmetric distribution (so M; = My_(i—1), fori € {1, g
Similarly mie = my_(i—1)2 = ngf — g—;mﬂ, for i € {1, - %

From the first IV equations, we have:

1

|:(p1>a @i| Amin{i, N—(i—1)}; Y1 M
D2 A v
mi1 = - T (A7)
CQ + [(;% A73:| ’\min{i,N—(ifl)}i’Y_l Cl
Similarly:
M;
mio = - T (AS)
Aoy | Pmin{i,N—(i—1)}; 71
o AT
Then, from (N + 1), we have:
. Ammin {6, N— (i=1)}; 7 Amin{i,N—(i—1)}; Y
A N [(ﬂ) ﬂ} Amin{i,N—(i—1)}; 71 M; %
=1 p2 = C2+[(ﬂ)aﬂ] )‘min{z:,N—l(i—U}i””l o =—— (A9)
1o p2) A1 \ ) afy
in{i, N—(i—=1)}; —
XAmin{i,N—(i-1)}, (¥ +Yn—@—1)) "N Yi

Similarly, from (N + 2), we have:
Amin{i, N—(i—1)}; Y

Ay & — H
> " 1
— P1 ¥ A2 ] Amin{i, N—(i—1)}; 71 = — A.10
b2 Cz+[(r’2) Al] ’ C/\l ) apy ( )
min{i,N—(i—1)}; —
XAmin{i,N—(i-1)}, (¥ +Yn—(i-1)) Cy
Combining these expressions and rearranging, we have:
1= —e)Ayin i, N—(i—1)},; 7 1
p2 T=Amin{i, N—(i—1)}; ¥ A1\ P min{i, N—(i-1)}; 7 1| x
P1 As
Amin{i,N—(i—1)}; Y
Z % M, =0 (%) (A.11)
i=1 o P T -1
)Amm{i,Nfufl)}ifl Yi

X Amin{i,N—(i-1)}, (yz T YN—(i-1)
N
Lemma A.1: Let \; > 1, \;y < 1, for every i € {1, 2, ..., %} and {);},2, be a decreasing sequence. If A; > As,

then house prices are higher in the city with higher TFP, p; > po.



Proof: In order to satisfy the equality (9 ), the only terms that can be negative are the ones in between squared

brackets. Since 4L > 1 and mini{

Az
if:

1
1=Amin{i, N=(i—1)}; ¥

} > 1, the only way one of these terms is negative is
1=(1=)Apin {4, N—(i—1)}; 7

1
T—x_- . - T8 . - -
. o min{i, N—(i—1)}; 7 Ay min{i, N—(i—1)}; 7
min (p) — <1 (A.12)
i D1 Ay

== qinfi, N=(—1)}; 7

1
. . 1=Amin{i,N—(i—1)}; I=Amin{i,N—(i—1)};
But, since min; (7;;2) {N=G-1}7 (—Al) N = ””V} > 1, the only way that the above

p1 As

inequality is satisfied is if g—j <l=py<p;. N

N
Theorem A.1: City Size and TFP. Let A1 > Ao, A\; > 1, ;v < 1, for every i € {1,2,...7 %} and {\;},2, be a

decreasing sequence. Then, the more productive city is larger, S; > Ss.

Proof: Based on Lemma A.1, we know that p; > py. Since A\; > 1, \;y < 1, for every ¢ € {1,2,..., %} and
N —(1—
{\i}2, is a decreasing sequence, we know that ﬁ > ﬁ > > ﬁ > 1 and % >
2

1—(1—a) A1y > ... li(lia))\%’y

T > e 1. But then, in order to satisfy (¥ ), we must have some positive and
2
negative terms. The term with respect to ¢ = % is positive if:
A\ =
——a N
LS (2) 2 (A.13)
D1 Ay

While the term with respect to ¢ = 1 is positive if:

1
D2 Ay TN
= > |- A14
P1 (A1> ( )

But notice that ‘2—? < 1. Then, we have that:

RN ey A A = e v
—= 2 —= Al
(Al) g (Al) (8.15)

Therefore, in order to satisfy (¥ ), we must have that:

D A\ TR Ay T
X ((Al) (%) ) (A.16)

But this implies that:

P2 @ Ay As (e ! Ay 1—(17§)A%7_1
P2y 21 22 22 Al
<P1> A, < ((A1> ’(Al (A.17)

Rearranging it, we have:

(1-a)(1-217) (17(1)(1”&&

¢ A A\ TOSER AL\ RO
<p1> 4 © (A2> 7<A2> (8.18)



Since A1 > As, we have that:

(m)a Ay (A.19)

From the expressions for m;; :

p1 @ Ay | Amin{i, N—(i-1)}; 71 M
A 3

m;1 = T (A.20)
A2:| Amin{i, N—(i—1)}; Y1 C

1

3
N =
fiey

mio = Mi T (A21)

C2 + [(%)a %} B (&5

2 1

(03
and (%) ﬁ—; > 1, we have that m;; > m;s, for every i € {1,2,..., N}. Finally, since:

N
S =y my (A.22)
=1

it immediately follows that S; > So. B

N
Theorem A.2: thick tails. Given that A; > As, A\; > 1, iy < 1, for every i € {1,2,...7 %} and {A\;},2, is a

decreasing sequence, t;he skill distribution in the larger city has thicker tails.

Proof:
()" 2] =
pdfin = Cz+[<%)a%]141701 (A.23)
s L) d) e
1
- « (Ami"{ivN*(i*U}i_/\l)'y (A24)
N . 1 2
TR L eel(m)a] e
while:
M, i
p2 ¥ A1 T=X1~
pdfiz = SN (G A;z}wi e (A.25)
=t C p2 ) ¥ AL 1—*min{i,1i77(ifl)}ﬂc
2+[<P1) Az] !
- ! (A.26)

1
Amin{i, N—(i—1)}; 7 c,

el () 2] e
A 1—



o
But then, since A\ = max{/\i}i]il and (%) ﬁ—; > 1, we have that:

(Axnin(iTN*(ifl)}q‘, 7>‘1)W

«
e B
K3
A1) Ty A.27
= ot[(2) 4] e (A.27)
1= X 1
CZ+[<%)Q%] 1*>\min{i,N—(i71)}i’Ycl
1
* =31y
N M. Cy+ | (B2 Ay c,
< 2 — (A.28)
P M, o\ % A, 1—/\,,,m{i,1317(i71)}i'v ’
- Cs + i) As Cy

Therefore, pdfi1 > pdfis. Since the distributions are symmetric, we also have pdfy1 > pdfno.l



I1. Nested CES and Free Entry of firms

We now consider a technology with gross complementarities S and 3 skill types:

B
Y =4 [mgllﬁ + [m3,y3 + m’flyl])\} . (A.29)

In this model we simultaneously consider the additional extension that firms are perfectly mobile. Firms can
relocate instantaneously and at no cost to another city. To establish itself in a city, a firm must buy a amount &
of land. Given that firms can freely enter and exit cities, we have that in equilibrium, firms must generate zero

profits, i.e.:

3
AjF(m1j,m2j,m3j) — Zwijmij — k:pj = 0, VJ S {1, 2} (A30)

We will assume that there are only two cities, 1 and 2, while city i has a measure N; of firms, that will be

(o7
pin down in equilibrium. Since w;y = (p—Q) w;1, the system then becomes:

p1
y y SR
{m21y2 + [m31ys +mi1yi] } X
A—1
x [m3,y3 +miyy o
At i fu) B—1 7 m?fl = (p*l) Azmly;l (1)
A P2
{m;2y2 + [mdays + miyu] ] x
A—1
i X [maays + miy] |
[y o v o P - p)” v v SRS L
Ay |mgyy2 + [mgyys + miyyi] ] may = (pj) Ay [m223/2 + [magys + miyyi] } Maa (2)
] oot
A
[mgll’& + [m3,ys +m] 1] } .
A—1
x [m3yys +miyy] _ o _
A mit = (%) Aemd” (3)

-1
A
2 [+ s+ mianl”]
A—1
x [m3ays + miyy]

Nimjy + Namga = M;, Vi € {1,2,3}
_ A1
A A
)7 (Mg + miyd® + i} = [4 - k] 22

(
_mglyQ + [m31ys +miiy (7)
Mmyys +miyy]* + m;2y2} = {% - k} A (8)
(9)

(

3 6_1
A
]

MaoYo + [M3ays + misy
_ I
A A

) P (1= 38) mbe | = Hop

A
(1= MB) [mdays + mipm]* + (1= 18) mdapn b = fopo

ma1ye + M3, ys +mi (1= XyB) [m3,y3 +mi

3 ﬂ—l
A
]

— A

m3aya + [Mirys + misy
From eq. (1) and (3), we have:

v—1 v—1
{mu} B |:m12:|
ms3i m32

mi1 mi2

ma31 ms32



Since:

M, N
-t _ 1 A.32
mi2 N, N, mi1 ( )
Ms; Ny
= —" - — A.33
ma = S = Fman (A.33)
Substituting it, we have:
M, — N
mi1 _ 1 1mi11 (A.34)
m31 Mz — Nims
Rearranging:
M,
mi1 = ——Ms31 A.35
'L (A.35)
Considering a symmetric distribution (so M; = Ms), we have that mi; = mg;. Similarly mis = mszy = 1‘]\/,[—21 —
%—;mll.

From (1) and (2), we have:

A— - A— _
[m3yys + miy o] mir! [miyys - mipy]* iyt (A.36)
-1 = -1 :
mgy, M3,
Using the symmetry of the distribution and consequentially that mi; = ms3; and mis = msq, we have:
ooty (mi ) ooy (maz\ 7!
mi;" | — =mly () A.37
P () g (2 (2.7
Then:
>\7711
m v
mo1 = (mi;) mo9 (A38)
Then, from (7) and (9), we have:
A
{)\ [m3yys +miyyi]” + mg1y2} {Nil - k}
= (A.39)
A
{@=298) diys + mlin* + A =By mbyye ) F07P
Using symmetry and again that my; = mg;, we have:
{(1 _)\'75) {N 1?75 % kyg] _/\}
(o2 [e% A
My = 1 - . mi7 [ys + v1] (A.40)
{1—(1—75) [W—m”
Similarly, from (8) and (10), we have:
A
{A [m3ays +miyyi]” + mgz?&} |:N£2 - k}
= (A.41)

{(1 — M B) [mYays + mipy] + (1 —~B) mgz?b} kary 8



Using symmetry and again that mis = ms2, we have:

(0299 [ty ] ]

NokavB ~ kavf
mysys = - VH : - m3 [ys + 1) (A42)
{1—(1—7@ [W_W”
Then, from equaiton (1), we have - again using symmetry:
p-1 _ p\“ A p-1 _
e+ o]l = ()2 [l e k] g aay
Substituting m3,y2 and mJ,ys, we have:
{ Br(A=1)[(1 = a) kN — H] r‘l MB-1 _
[1—(1—a)By kN, — (1 - By) H .
_ (pl>aA2 { Bry(A=1)[(1 - ) kN — H] ]B e
p2) A (1= (A=) kN2 — (1 -8y H "

Assuming A # 1, we have:

TR NIV Lol R

«a —L—a)py 110y

mi\ _ p\ Az | Toe)m RN == E < (A.44)
mio P2 Ay (1—a)kNy—H

X(I—a)kN.—H

WV _ M Ny .
Substituting mis = Ne T N, we have:

B—1 kvé—l
o [1—(1—a)By]kN1—(1—By)H
(a) Ay | T-(—a)BkN2— (1B H
P2 Ay

o (I=e)kN>—H
(I—a)kN.—H
mi1 =

M (A.45)
. ngkagﬁy}mﬁgkmgﬂ S
P1 Ag 1—(1—a)By]kN2—(1—-B~v)H
Nz + N (pi) : X(ka)k;frH
(A—a)kN—H

Since the distribution is symmetric, we have:

1
N [1-(-a)slkN—(—gpn 7] 77
(@) Ay | I=(A—a)AkN2—(1-pH

p2 Ay « (1—a)kN>—H
(I—a)kN—H
ms1 = T M3 (A46)
B—1 XB—1
[
p Ag 1-(1—a)By]kN2—(1—-B~)H
Na+ M (p;) A, (1—a)k1?/2—H
X A=a)kN.—H

Finally, from our expression for m3J,ys, we have:



(1—AvB)[H—N1k]—AN: kavB }

NikavB A A
m3ys = lea’vﬁ—(i—wﬁ)[H—Mk} myy [ys + i (A.47)
{ NikaypB }
Rearranging it, we have:
1 1
_[HO=BM) — [ = (1 —a) kN7 (s ] s
MR TS (=) By kN — (1— By H 1 (A.48)
g 1 ) Y2
Substituting m11, we have:
{H(l—ﬂm—u—(l—ammm}% ([ygm]*)% y
[1-(1—a)By]kN1—(1-Bv)H Y2 N
[1=(1=a)B]kNi—(1=pmyE |77 3P
(ﬂ)% 1-(1-a)By]kN2—(1-Bv)H
_ P2/ A (1—a)kNo—H
L 1T—o)kN, 0 (M) (A.49)
A
= (—a)paeNs —(—pyya |77 ) ST
P\ T—(1—a)B kN2 —(1-BH
NatNid (22) 42| [ Xa()l_'v(]l)k;QEH )
(I—a)kN1—H
Then, also notice that:
M
mig = ! - (A.50)
N %1—51—(1;/3%1%1\/1—51—/37& A1y MET
P1 A 1-(1—a)By]kN2—(1—-Bv)H
Noemig(B) a ) RN
X(I—a)kN.—H
and:
M.
M3z = & i (A.51)
N {17517a;ﬁ'y%kleglfﬁ'ng e
p)" A T—(I—) kN2 —(1—By)H
Ny + Ny (17) a (1—a)k1i127H K
X I=a)kN—H
and . )
[H(lfﬁmf[lf(lfa)ﬁwkm} v ([ysm]*)? y
1-(1-a)Bv]kN2—(1-Bv)H Y2 N
Moz = (A.52)
X My

T
p1 \* Ay [[1—=(1—a)By]kN] —(1—By)H _ (1—a)kNg—HB—1 | Xyp-1
N2+N1{(ﬁ) Tf[[1-(1-&)(17]k:N;—(1—137)11 X (1—a)ka—H] }

Proposition A. 1 If A > 1, \y <1, and \yB < 1, there is no equilibrium in which Ay > A1, and mi; > mys.

Assume A; > A;. Before we continue, we prove the following Lemma:

Lemma A. 1 Ifm11 > mia, then p1 > pa, No > Ny, and Moy > Moo



Proof. Going back to the system, we have:

[mg1y2 + [m3,y3 +m];

A1 ]
ZU1] } X

A—1
x [m31ys +mi ] 1 @ 1
A ¢ /\ B— 1 my; = (%) Asm]y
[m22?12 + [mdyys + miyu]
A—1
i X [m3ays + miay] |
[, AP p ) v v SIPPRCY L
Ay [(m3yy2 + [mg1ys +miyyi] myy = (5r) Az |mgye + [mgyys + miyyi] Mo
L b1 T
A
{mgﬂ/? + [m31ys +miyyi] } X
A—1
X [mg1y3 + miylyl] 1 @ 1
A ¢ 3151 my = (%) Aymi,
[mgzm + [m3ays +miyyi] } X
A—1
X [M3ays +misy]
N1m11+N2m12 *Mz,VZE {1 }
my Yo + [Mm31ys + mllyl] { (m31ys + mllyl] + mgli%} = |:N£1 - k} BT
- :[3 1
Maoye + [M3ays + m?zyl] {>\ Mm3ays + m12y1] + m%ng} = [N% - k} RREe
- :B 1
My Y2 + [m3,ys + m¥1y1] { (1= X\B3) [m3,y3 + m11y1} +(1=18) mg1y2} = A%pl
myws + s + ] {1 08) imdaus + miu + (1~ 8 myyn} = ps
From the last two equations, we have:
[ v v SIURPY L ]
[m21y2 + [m3yys +miyy1] } X ps ALk
v ,y A v p1 Az — A P2
| x {1 = 38) s + mlyn* + (L= vB) mbywe |
- ﬁ_l -
A
[mgng + [Mm3ays + miyyi] } X
o v A o T AP
% { (1= 28) Imiays +mlsyn) + (1 =18 myya } |
Equating this two expressions, we have:
o o SIRCY L
[m21y2 + [ma1ys +mi1yi] } X p2 Ay
A p1 Az
x{ (1= X8 Imdiys + mlyn] + (1= 78) miype | .
p-1 -
A
B {m%ng + [Mm3ays +miyyi] } X
A
% {1 = 3B [moys + o] + (1= 78) s |
since My = M3, we have that ms3; = my; and mgzs = mq. Based on these results, we have:
v Ay APt Ay A ¥ p2 Ay
et s+ {0208 m s ]+ (LB e g |

£—1
— [y + i s+ 0] {1 = 2B [y + ] + (L= 9B) maye |

Then, from equation (1), we have - again using symmetry:

(A.54)

(A.55)

(A.56)



~ Ay AP m\" A2y, Ay APt myg
Mo1Y2 + My lys + 1] } =\ A, [m2292 +mi, [y + y1] } -1 (A.57)
D2 1 11
Substituting it back, we have:
A P2 e Ay—1
\ \168-1 (1= MB) lys + y1] o mi1 — Mig | My
miaye +mi3 s + 1] e —0 (k) (A58)
+(1=70) 92 [(ﬁf) (n’%j) mj, — m;2]
Since:
() = ()
mi2 ma2
I
() = ()
mi1 ma1
we have:
A p2 1-a myy Ay
N 418-1 (1=X2v8) [ys + 1] <pj> il — 11 miy
[m32y2 +mi3 [ys + 1] } e =0 (A.59)
+ (1 =98)y2 [(ﬁf) L — 1} M3y
Since:
Ay—1
ma1 <m11> S (A.60)
M2 mi2
we have:
A p2 1ma myy Ay
A 4181 (1= AyB) [ys + 1] (;71) s 1| miy
[z + 3 s + ]| - =0 (A.61)

(1=98)y2 [(

P2
P1

-

mii
mi2

()

— 1] Mg

Assuming that Ay5 < 1, we have that the only terms that can be negative are the ones inside the squared brackets

inside the curly brackets.

Since ’\,7__11 €(0,1):

)

1—

“(
(

mi2

mii

mii

mi2

Ay

=

g

y(A—1)
1—v



Since 7(1%_71) € (0,1), the sign will depend on 2. Since

11—« 11—« A“’711
m m m v
2 <1= (pz) 1 > <p2> (11> —-1].
mii1 p1 mi2 P1 mi2

In order to keep the equality, we must have:

D1 mi2
m p 11—«
mi2 D2

1—a >\»7711
m -
b1 mi2
11—y

mip\ Y p1 o
(m2) " <(2)
mi2 D2

since % € (0,1) and a € (0,1), we have that:

1—a 1—X~y
(pl) c (m11> Y omy
P2 mia " mya

l-a
<p2> M 150

and

since Zi; > 1, we have that p; > po.

We also showed earlier that:

11—y

mo1 <m11> =
M2 mi2

Finally, from equations (7’) and (8'), we have:

since zg > 1, we have that mg; > mao.

N = i
1 ayBA; v ~ v AB-L ~ Y A ~y
T [m21y2+[m31y3+m11y1] ] {A[m31y3+muyl] +m21y2}+k
N, = 1
2 ayBAg v ~y ¥ N ~ Y A y
TPy [m22y2+[m32y3+m12y1] ] {)‘["‘3293"‘7”123/1] +m22y2}+k

Since, from (9) and (10):

A k
771 T v y v a1Pt i
{m21y2 + [m31ys +my 1] } X
A
| {@ =By mbge + (1= X8 miyys + mlw) |
Ay K
772 T v v R i
{mmyQ + [m3ays +misu] ] X
A
L {0 = B myye + (1= X8) [miays + mipw ]} |

(A.62)

(A.63)

(A.64)



Substituting it back, we have:

A
N (1= Bv) mdyys + (1= X8) mi] [ys + ]
EL— (1 =) By miyye +[1— (1 — @) B my] [ys + 1]
and R \
N, = (1= By)maaye + (1 — MyB) mi3 [ys + yl}
B 1= (1—a) By mdye + [1 — (1= a) MBI ma] [ys + 1]
Then:
A=)y
A1) | () T -1 7
N aByyz [ys +y1]” ( ) [(m11> ] Mmaamiy
=L ; (k%)
2 [1—(1—a)By](1—B7) (y2)" magma,
1= (1= ) By (1= MB) w2 [ys + 1) m3ym3
1= (1= a) M8 (1= BY) [ys + 1] yamIymi]
(1= (1= a) MB (1= MB) [ys + 1] myTm33
Since Zﬁ < 1, we have that % <1= Ny <N,.
Then, back in the system, rearranging it, we have:
>\ 1
My ] ([yaerl]*)? %
N2+N1{(%)Q%Zﬁ_l}m v2
1
H(=BM\)—[1-(1=c)BM]kN: | ¥
[ [1=(1=a)BrlkN1 —(1- ﬁv)Hl] = M (1)
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Then, from (% %), we have:
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Therefore LHS < 1. We also know that (%) Y7 S 1. Given Ay > A1, RHS > 1 and we have a

contradiction
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In order to complete our proof, assume that % =1= mi; = mys. Given that % = (%) , we have

that mso; = mao. Then, from (J¥k) we have N; = Ny and from (%) we have p; = py. But, combining these
results and (%% %), we again have a contradiction, once LHS = 1 while RHS;1 once Ay > A;. ®

Corollary A. 1 There is no equilibrium in which Ay > As and mye > my1, Vi € {1,2,3}.

Theorem A. 1 City Size and TFP. Let Ay > Ao, 8> 1, Av8 < 1, and v < 1. Then the more productive city is
larger, S1 > Ss.

Proof. Before we start, define:
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Since A1 > A, from Corollary 1 we have mi; > mqo. From Lemma 1 and AyS8 < 1, we have that Z < 1.
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we also have that |1 — %Z*vé—l} < 0. Therefore:

Sy — 51 <0 (A84)

and we have that the city with the highest TFP is also the largest city. m

Theorem A. 2 Thick tails. Let Ay > Ag, 3> 1,A> 1, and A8 < 1, the skill distribution in the larger city has
thicker tails.

Proof. Consider the distributions, denoted by pdf;; :
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pdfs1
pdfs2 >1m



III. Agglomeration Externalities

Since Marshall (1890), there is a broad consensus in the economics literature that the principal explanation
for the existence of cities is the presence of agglomeration externalities (see Duranton and Puga, 2004 for a
theoretical survey, and Rosenthal and Strange, 2004, and Combes, Duranton, Gobillon, Puga, and Roux, 2009
for the empirical evidence). Due to economies of scale and network effects, firms that cluster together may see
a decline in the costs of production, due to the presence of competing multiple suppliers, greater specialization
and the division of labor. Even direct competitors in the same sector may benefit because the cluster of firms in
the same city attracts more suppliers and customers than a single firm in isolation. Alternatively, there may be
demand-side agglomeration externalities due to the variety of goods and services provided. Of course, the size of
the city is limited by diseconomies of agglomeration, for example congestion, and the limited availability of land
which drives up the price of housing and office space. The latter is captured by the fixed amount of land in our
baseline model above.

Because the key feature of agglomeration externalities is city size, we will assume that TFP is determined
endogenously and increasing in city size S; : A; = A(S;), where A’(S) > 0. Cities are ex ante identical and there
are no initial differences in TFP across different cities.

We analyze the case of Extreme-Skill Complementarities with free mobility of firms in a two-city model. The
next Theorem characterizes the equilibrium allocation of skilled workers and of firms across cities. Firms in larger
cities are more productive due to higher agglomeration externalities. Also real estate prices are higher. This may
seem obvious, but as in the results on city size with exogenous TFP, this hinges on the fact that land supply is
equal (or at least not too different). Once endogenous TFP due to agglomeration is higher, labor productivity is
higher and therefore labor demand. As a result, the representative firm is larger and more firms enter. Finally,

the same logic that explains the emergence of thick tails applies exactly as it does for the case of exogenous TFP.

Theorem A. 3 Given endogenous agglomeration externalities and given A > 1 and Ay < 1, and provided cities

of different size exist, the larger city has:

e higher TFP;
e higher real estate prices;
e more and larger firms;

o thicker tails in the skill distribution.
Proof. See below. m

Observe that with endogenous agglomeration externalities we can readily extend the proofs to the case of the

technology with Top-Skill Complementarity.

An open question remains whether there actually exist equilibria with endogenous agglomeration externalities

where cities are ex post heterogeneous, despite being ex ante identical. Of course, if there is heterogeneity in



equilibrium city size, we expect there to be multiple equilibria since there is no ex ante advantage to any city ex
ante: one equilibrium where city 1 is large and city 2 is small, another equilibrium where city 2 is large and city
1 is small, and finally an intermediate equilibrium where cities are identical.

For the case of a CES production technology, we show conditions under which cities are different in size,
despite the ex ante identical technologies and agglomeration externalities. Mobility of workers and free entry of
firms induces wages and housing prices to adjust such that workers are indifferent between locating in either city.
When there are sufficiently large economies of scale of agglomeration, i.e. when the function A is sufficiently
convex, we obtain that cities differ in equilibrium. We establish this result for the exponential function in

conjunction with the CES technology.

Theorem A. 4 Given the CES technology and endogenous agglomeration externalities of the form A(S) =

e¥S 1) > 0, cities of different size exist, provided 1) > %

Proof. See below. m

This result indicates that agglomeration externalities in production alone can generate the coexistence of
cities of different size and productivity. The qualifier requires that for a given size of the labor force M, the
externality must be strong enough. If 9 is high enough, the function A = ¥ will be convex enough and as a
result, there will be a large enough agglomeration effect that generates the existence of multiple equilibria.

Interestingly, a commonly assumed functional form in partial equilibrium, A(S) = S?, does not generate
heterogeneous cities in conjunction with the CES technology. This is true even if A is convex (¢ > 1) as shown
in the following Corollary. The reason is that already under CES, there is proportionality in the equilibrium
demand for labor (proportional across skills), and an externality of this form lifts each city’s productivity, but
again proportionally. As a result homotheticity, the size of the city is fully governed by the decreasing returns at

each skill level. The returns to scale can never be sufficiently strong.

Corollary A. 2 Given the CES technology and endogenous agglomeration externalities of the form A(S) =

S?® ¢ >0, generically cities are of identical size.
Proof. See below. m

Ideally we would like to solve the model and prove that multiple equilibria exist also in the presence of extreme-
skill complementarities. Unfortunately, that problem is quite a bit more challenging due to the dimensionality of
the skill distribution. Not surprisingly, under CES, the proportionality of labor demand implies that distributions
are identical across cities. As a result, we only need to solve for the endogenous city size, and not each skill level
individually. While we cannot prove any general results, we do conjecture that the nature of the results extends

to the non-CES case.



Proofs Agglomeration Externalities

Going back to the system of five equations in the preliminaries, we can now substitute A; for A (S;). Denote by

M=S8 +85,= >-; M; as the economy wide population. Then we will write Sy = M — S;.

From dividing the first by the second and rearranging, we obtain:
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We can now establish the following preliminary results. First, cities are not equal in the number of firms IV;.
LemmaA2If)\>1and)\'y<lthen 7&1 and Z # 1.

Proof. Assume %“’ =1, then from (%) we have:
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which is a contradiction, since A > 1 = ! (M(l )a)] > 1L a(ly)a)}.



Rewritting the equality (9 ) above, we obtain:
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which as we saw before, it is a contradiction. m

Given Z, we can now establish the main relations between the number of firms Nj, city size S}, housing

prices p; and TFP A(S;).
Lemma A. 3 If Z < 1, then:

1. N1 > No;

2. 81> 85;

3. A > As;

4. p1 > Ppa2-

With opposite inequalities if Z > 1.

Proof. We establish each of the items in turn
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Then:
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If Z < 1, we have: —f= (LHS) > 0. Then, since Hgosell > B2l if 7 < 1 we must have 42 < 1.
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If Z < 1, from the previous Lemma we know that %—f < 1. Since:
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The same logic establishes the opposite when Z > 1.

3. From the previous lemma, if Z < 1, we have that S; > S. Since A’ (-) > 0, A(S1) > A (Mf Sl) = As.
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Since Z < 1, we showed that % > 1. Then:
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Similarly for Z > 1.

Next, we establish the result for thicker tails for the case of endogenous TEFP from agglomeration externalities.

Lemma A. 4 Given A > 1 and Ay < 1, the larger city has thicker tails.

Proof. If Z < 1, from Lemma A.3 we know that city 1 is larger than city 2, and that A; > As. Therefore we
can apply Theorem 2: city 1 is larger an has thicker tails. Instead, if Z > 1, we know that city 2 is larger than
city 1, and that A; < As. Now we can define Z’ = 1/Z (or relabel the cities) and again apply Theorem 2: city 2

is larger and has thicker tails. m
Now our main result immediately follows from Lemmas A.2, A.3, and A.4:

Theorem A.3 Given endogenous agglomeration externalities and given X > 1 and Ay < 1, and provided cities

of different size exist, the larger city has:
We now establish the proof of Theorem A.4

Theorem A.4 Given the CES technology and endogenous agglomeration externalities of the form A(S) =

2(1-9(1-a))

e¥S ah > 0, cities of different size exist, provided 1 > o)

Proof. In the case of CES (A = 1) we can write the system of 9 equilibrium equations as:
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From egs. (6) and (7), we obtain:
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e
A e
_5 A(51) (A.106)
M — S, A(M - 5)
Now consider the case where A(S) = ¢¥® and denote the exponent on the RHS term by K = % and

observe that it is positive. Then the equilibrium condition is:

MSE S (62S1_W)K

S1 —
1 = = K(25-M
Og(M&) (25, = M)

First, there is always a symmetric equilibrium S; = g Substituting S7 = g gives 0 both on the LHS and the

RHS.
Next, we show that there are also two asymmetric equilibria, one where 57 > % > S5 and the mirror image

with Sy > g > S1. To see this, observe that the RHS is linear with bounded support on [0, M| and takes
values between —K M and K'M. The LHS takes values between —oo and +o0: at S; = 0, the LHS is equal to



—KM

—KM

ES|

Figure 15: Proof of Theorem A.4: A. Multiple equilibria with cities of different sizes exist when K is
large enough; B. a unique equilibrium exists with identical cities exists when K is small.

log0 = —oo and at S; = M, the LHS is equal to log co = +00. The slope of the LHS is positive and given by

M
— . (A.107)
S1(M — S1)
We know that there is an intersection at S; = g, and therefore, given the behavior at S; = 0 and co and
continuity of both LHS and RHS, there is are at least two more intersections provided the slope at Sy
flatter than the slope of the RHS, i.e. provided:

SIS

= M

(1-7(1-0a))

M1 - «)
[

2
<2K or o> (A.108)
The logic is illustrated in Figure 15.

Corollary A.2 Given the CES technology and endogenous agglomeration externalities of the form A(S) = S?, ¢ >
1, generically cities are of identical size.

Proof. Now the equilibrium condition can be written as:

S

¢(1—a)
B < S )lw(la)
M-S \M-5 '

which has a unique solution S; = M — S; provided 115

(A.109)
(l-o) _
y(1-a)

indeterminacy in the size of both cities and S; € [0, M
generic, therefore generically S; = g and cities are identical. m

1 # 0. When 202

T (—a) — 1 = 0, there is
]. However, this configuration of parameters is non-



