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1 Introduction

Location choices by households and firms are of interest to economists for numerous reasons,

ranging from the determinants of residential segregation patterns in cities to the design of

national tax policy. Given the discrete nature of such choices, they are typically modelled

by empirical researchers through McFadden’s (1974) conditional logit framework.1 The ap-

peal of this approach lies in its formal link between the theoretical objective function of a

representative location-seeking agent and the likelihood function of the empirical model.

Mostly out of a perception of greater computational ease, researchers have resorted to

Poisson count estimation as an alternative approach to the conditional logit.2 Guimaraes,

Figueiredo and Woodward (2003), henceforth GFW, have shown that, with purely location-

specific locational determinants or with determinants that are specific to locations and to

groups of agents, the conditional logit and Poisson estimators return identical parameter

estimates. In this sense, the two estimators are equivalent, and the rigorous link to the theory

offered by the conditional logit model therefore applies identically to the Poisson. This useful

result has already been applied widely in the location choice literature.3

We show that the identical coefficient estimates resulting from the two estimation strate-

gies in fact have fundamentally different economic implications. The conditional logit model

implies that the aggregate number of agents is fixed and that differences across locations affect

only the distribution of those agents across those locations. Hence, an additional agent at-

tracted to location j means one less agent among the other locations in the relevant set, i 6= j.

In the Poisson model, however, an additional agent attracted to location j has no impact

on the number of agents in the remaining locations and thus raises the aggregate number of

agents, summed across i and j, by one. Thus, the conditional logit model and the Poisson

model can be viewed as polar cases, with the former representing zero-sum reallocations of

firms or households across locations and the latter implying a positive-sum world.4

We also show that intermediate cases between these two extremes can be represented by

a nested logit model featuring a generic outside option. This approach returns the same

parameter estimates as the two other estimators. The nested logit in fact can be written

1For studies of firm location choices using the conditional logit approach, see, e.g., Carlton (1983), Bartik
(1985), Head, Ries and Swenson (1995), Guimaraes, Figueiredo and Woodward (2000), Head and Mayer
(2004), Crozet, Mayer and Mucchielli (2004), and Devereux, Griffith and Simpson (2007). For corresponding
studies of household location chocies, see, e.g., Ellickson (1981), Quigley (1985), Nechyba and Strauss (1998),
Schmidheiny (2006), and Bayer, Ferreira and McMillan (2007).

2See, e.g., Papke (1991), Becker and Henderson (2000), List (2001), Guimaraes, Figueiredo and Woodward
(2004), and Holl (2004), for studies of firms’ location choices; and Flowerdew and Aitkin (1982) and Börsch-
Supan (1990) for studies of individual migration choices.

3Studies invoking the GFW equivalence result include Holl (2004), Duranton, Gobillon and Overman (2006),
Brülhart, Jametti and Schmidheiny (2007), Arzaghi and Henderson (2008), Davis and Henderson (2008), and
Coeurdacier, De Santis and Aviat (2009).

4For recent research on the cross-region effects of region-specific policies aimed at attracting firms, see, e.g.,
Greenstone and Moretti (2003), Chirinko and Wilson (2008), and Wilson (2009).

2



as a linear combination of the conditional logit and Poisson models, with a single “rivalness

parameter” representing the closeness of the nested logit to the conditional logit (and thus

the distance from the Poisson). Conditional logit and Poisson elasticities mark the polar cases

and can therefore serve as boundary values in applied research.

The paper is structured as follows. In Section 2, we formally derive the commonalities

and differences among the conditional logit, Poisson and nested logit models. Empirical

implications and an illustration are presented in Section 3. Section 4 concludes.

2 The models

We denote agents with f = 1, ..., N and regions with j = 1, ..., J . For simplicity, we shall

frame our discussion in terms of corporate location decisions, and therefore relate to f as

“firms”.

Following GFW, we first assume the determinants of locational attractiveness to be purely

region specific, such that they affect all firms symmetrically (case A). The K observable

characteristics of each region are given by the (K × 1) vector xj . We shall later relax this

assumption, and allow locational attractiveness to be region-industry specific (case B).

The random variable nj represents the count of firms in region j, whereas Nj denotes the

number of firms actually observed in region j. Analogously, the random variable n represents

the total number of firms, whereas N denotes the observed total number of firms.

2.1 Case A: industry-invariant locational determinants

2.1.1 Conditional logit

Suppose that firm f ’s profit in region j is determined by the linear model πfj = x′jβ + εfj ,

where β is a (K×1) vector of coefficients. Then, the conditional logit model is defined by the

assumption that the random term εfj is independent across f and j and follows an extreme-

value type 1 distribution. With this assumption, the probability that a given firm f chooses

region j rather than another region is given by

Pj|f = Pj =
ex
′
jβ∑J

i=1 e
x′iβ

, (1)

where
∑

j Pj|f = 1 for all f . Since locational characteristics xj are assumed here to affect

all firms symmetrically, this probability also represents the share of firms that will choose

region j.

The parameter β can be estimated by maximum likelihood. We can write the log likelihood
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as

logL(β) =

J∑
j=1

Nj logPj =

J∑
j=1

Njx
′
jβ −

J∑
j=1

[Nj log(

J∑
i=1

ex
′
iβ)]. (2)

The conditional logit model implicitly assumes that the total number of firms n is given

and does not depend on the locational characteristics x. The expected number of firms in

region j, E(nj) is therefore simply

E(nj) = nPj = n
ex
′
jβ∑J

i=1 e
x′iβ

. (3)

The percentage change in the expected number of firms in region j, E(nj), with respect

to a unit change in the k-th locational characteristic of region j itself is given respectively by

the own-region semi-elasticity :

εjj =
∂ logE(nj)

∂xjk
= (1− Pj)βk. (4)

Similarly, the percentage change in the expected number of firms in another region, E(ni 6=j),

with respect to a unit change in j’s k-th locational characteristic is given by the cross-region

semi-elasticity :

εij =
∂ logE(ni)

∂xjk
= −Pjβk. (5)

For simplicity, we shall henceforth refer to these and all subsequently presented semi-

elasticities as “elasticities”. Hence, all “elasticities” derived and calculated in this paper in

fact are semi-elasticities.

The own-region elasticity (4) shows that by enhancing its attractiveness a region will in-

crease its expected number of firms, and the cross-region elasticity (5) implies that one region’s

increased attractiveness to firms will reduce the number of firms choosing other regions: one

region’s gain is another region’s loss. Moreover, a simple comparison of the two elasticities

shows that small regions (in terms of Pj , the share of firms they host) are predicted by the

conditional logit model to find their own firm counts to be relatively elastic to changes in

their own locational characteristics, while not affecting firm counts in other regions as much

as large regions.

We now turn from the viewpoint of individual regions to an analysis of what the conditional

logit model implies for the total number of firms among the J regions. By definition,

E(n) =
J∑
j=1

E(nj) = n = N. (6)
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Hence, the expected total number of firms is equal to the observed total, N , irrespective

of regressors and parameters. This again shows the “zero sum” aspect of the conditional logit

model, where the implied problem is one of allocating an exogenously fixed number of firms

over a set of regions. It also follows logically that changes in the locational attractiveness of

individual regions will not affect the total number of firms. Formally, the elasticity of the

expected total firm count relative to a change in one of the K locational characteristics of any

particular region j is zero:

εj =
∂ logE(n)

∂xjk
= 0.

2.1.2 Poisson

The Poisson estimator is based on the assumption that nj is independently Poisson distributed

with region-specific mean

E(nj) = eα+x
′
jβ. (7)

Here too, β can be estimated by maximum likelihood. We can write the concentrated log

likelihood as

logL(β) =
J∑
j=1

Njx
′
iβ −

J∑
j=1

[Nj log(
J∑
i=1

ex
′
iβ)]−

J∑
j=1

logNj !−N +N logN. (8)

When comparing this to (2), the point made by GFW is plain to see: the log likelihood

functions of the two models are identical up to a constant, and maximum likelihood estimation

therefore yields identical parameter estimates β̂.

In expectations, the share of firms in region j can be written as

Pj =
E(nj)∑J
i=1E(nj)

=
eα+x

′
jβ∑J

i=1 e
α+x′iβ

=
ex
′
jβ∑J

i=1 e
x′iβ

, (9)

which is exactly the same expression as (1), for the conditional logit model. This equivalence

lies at the heart of the GFW result:

Observation 1 (Guimaraes, Figueiredo and Woodward, 2003) The log likelihood func-

tions for the conditional logit and the Poisson model are identical up to a constant, and max-

imum likelihood estimation therefore yields identical parameter estimates β̂.

The elasticity of the expected number of firms in region j, E(nj), with respect to a change

in the k-th locational characteristic of region j itself, and by that of another region i 6= j, is

given respectively by the own-region elasticity

εjj =
∂ logE(nj)

∂xjk
= βk (10)
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and by the cross-region elasticity

εij =
∂ logE(ni)

∂xjk
= 0. (11)

Comparing these elasticities to their conditional-logit equivalents (4) and (5), we observe

the following differences.

Observation 2 The Poisson model implies more elastic responses by firm counts to given

changes in own-region characteristics than the conditional logit model.

Observation 3 Unlike in the conditional logit model, in the Poisson model, one region’s

change in locational attractiveness has no impact on the number of firms located among any

of the J − 1 other regions.

Hence, even though the estimated parameters β̂ will be invariant to the choice of model,

their implied predictions differ starkly. The conditional logit model implies a zero-sum allo-

cation process of a fixed number of firms over the J jurisdictions. In contrast, in the Poisson

model new firms are non-rivalrous, in the sense that adjustment to one regions’s locational

characteristics works not through changes in firm numbers among the J − 1 other regions

but from changes either in the supply of local entrepreneurship or in firms attracted from or

repelled to somewhere outside the considered set of J regions.

Moving again from the viewpoint of individual regions to an analysis of the model’s im-

plications for the total number of firms among the J regions, and using (7), we find that

E(n) =

J∑
i=1

E(ni) =

J∑
i=1

eα+x
′
iβ = eα

J∑
i=1

ex
′
iβ.

Comparing this expression with its conditional logit equivalent (6), we note that the

expected total number of firms is now not generally equal to the observed total number of

firms, N , but depends on the regressors and parameters.5 The Poisson model thus implies

that a change in a region’s locational attractiveness will affect the sum of firms active in the

J regions. Specifically, the elasticity of the expected total firm count with respect to a change

in one of the K locational characteristics of any particular region j is given by6

εj =
∂ logE(n)

∂xjk
=

ex
′
jβ∑J

i=1 e
x′iβ

βk =
E(nj)

E(n)
βk = Pjβk.

5Note that the predicted total number of firms at the estimated coefficients and actual data corresponds to
the observed total of firms in the Poisson model just as it does in the conditional logit model. In symbols,
E(n|α̂, β̂) = N .

6We define Pj ≡ E(nj)/E(n) 6= E(nj/n) in the Poisson model. Using this definition, Pj = ex
′
jβ/

∑J
i=1 e

x′iβ

in both the conditional logit and the Poisson model.
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Observation 4 In the Poisson model, an increase (decrease) in one region’s locational at-

tractiveness increases (decreases) the total of firms summed across the J regions. In the

conditional logit model, a change in one region’s locational attractiveness leaves the total of

firms summed across the J regions unchanged.

2.1.3 Nested logit

Observations 2, 3 and 4 show that the two models are the polar cases of a continuum of

relative adjustment margins, ranging from reallocations purely within the set of alternatives

considered (conditional logit) to reallocations purely between that set and some outside option

(Poisson). We now turn to a micro-founded approach that covers this whole continuum and

thus encompasses the polar cases.

Suppose that firms make two sequential choices. At the first stage, they choose between

locating in one of the J regions considered (which could stand for “domestic” regions) and

an outside option j = 0 (which could stand for locating “abroad”, or for remaining inactive).

If they have chosen to set up in one of the J regions, they pick one of them at the second

stage. Like in the conditional logit model, firm f ’s profit in region j > 0 is determined by a

linear function of the region-specific characteristics xj , such that πfj = x′jγ + νfj . Firm f ’s

profit associated with the outside option is given by πf0 = δ + νf0, where δ summarizes the

exogenously fixed locational attractiveness of the outside option. The stochastic term νf0 is

assumed to follow a generalized extreme value distribution as in McFadden (1978).7 This

leads to a nested logit model with one degenerate “nest” that includes j = 0 only and one

other “nest” that includes all regions j > 0. This two-stage structure assumes independence

between νf0 and νfj for all j > 0, and non-negative correlation
(
1− λ2

)
across νfj for all

j > 0; where 0 < λ ≤ 1, sometimes called the “log-sum” coefficient, measures the importance

of the domestic nest as a whole relative to the outside option.

In this setting, the probability that a particular firm f chooses the outside option j = 0

is given by

P0 =
eδ

eδ + (
∑J

j=1 e
x′jβ)λ

, (12)

and the probability that it chooses a particular region j > 0 among the J regions of interest

is

Pj =
ex
′
jβ(
∑J

i=1 e
x′iβ)λ−1

eδ + (
∑J

i=1 e
x′iβ)λ

= Pj>0 · Pj|j>0,

where we reparametrize β = γ/λ. This implies that, unlike in the conditional logit, the esti-

mated regression parameters β̂ are not identical to the structural parameters of the underlying

7The specific density function assumed over {0, J} is F (νf ) = exp
[
−(
∑J
j=1 e

−νfj/λ)λ − e−νf0

]
.
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profit function.

The choice probabilities Pj can be decomposed into (a) the probability of choosing any

of the J regions, Pj>0 = 1− P0, and (b) the probability of choosing a specific region j given

that the firm chooses to set up in one of the J regions,

Pj|j>0 =
ex
′
jβ∑J

i=1 e
x′iβ

. (13)

The parameter β can again be estimated by maximum likelihood. We can write the

concentrated log likelihood as

logL(β) =
J∑
j=1

Njx
′
iβ−

J∑
j=1

[Nj log(
J∑
i=1

ex
′
iβ)]+N0 log(N0)+N log(N)− (N +N0) log(N +N0),

where δ and λ cancel out when we substitute the first-order condition ∂ logL/∂δ = 0 into

L(β, δ, λ).8 N is the number of firms locating in any of the regions j > 0, and N0 is the

number of firms choosing the outside option j = 0.

Observation 5 The log likelihood functions for the conditional logit, the Poisson and the

nested logit model with a single outside option are identical up to a constant, and maximum

likelihood estimation therefore yields identical parameter estimates β̂.

The ratio (13) is identical to its equivalents in the conditional logit and Poisson models,

(1) and (9). This correspondence among the three models lies at the heart of Observation 5,

which extends the GFW result to the nested logit case with a single outside option.

The parameter vector β is identified and can be estimated without observing N0 because

the first-order condition of the concentrated likelihood function, ∂ logL(β)/∂β, is independent

of N0. The parameters δ and λ, however, are not identified when N0 is not observed because

the first-order conditions ∂ logL(β, δ, λ)/∂δ = 0 and ∂ logL(β, δ, λ)/∂λ = 0 depend on N0

(see footnote 8). Even if N0 were observed, δ and λ would not be identified separately, as the

two first-order conditions are identical.

8The concentrated likelihood is obtained as follows:

logL(β, δ, λ) = N0 logP0 +

J∑
j=1

Nj logPj

= N0 log

(
eδ

eδ + (
∑J
i=1 e

x′
jβ)λ

)
+

J∑
j=1

[
Nj log

(
ex

′
jβ(
∑J
i=1 e

x′iβ)λ−1

eδ + (
∑J
i=1 e

x′iβ)λ

)]
.

The first-order condition with respect to δ is ∂ logL/∂δ = N0 − (N + N0)eδ/[eδ + (
∑J
i=1 e

x′iβ)λ] = 0. The

estimated δ̂ can therefore be expressed as a function of the estimated β̂ and λ̂: eδ̂ = N0/N · (
∑J
i=1 e

x′iβ)λ.

When we substitute eδ̂ in logL(β, δ, λ), λ also cancels out because the first-order condition with respect to λ
is automatically satisfied as ∂ logL/∂λ = ∂ logL/∂δ = 0

8



The expected number of firms in region j > 0 is

E(nj) = (n+ n0)Pj = (n+ n0)
ex
′
jβ(
∑J

i=1 e
x′iβ)λ−1

eδ + (
∑J

i=1 e
x′iβ)λ

. (14)

The own-region elasticity of the expected number of firms, E(nj), relative to locational char-

acteristics is given by

εjj =
∂ logE(nj)

∂xjk
= [1− Pj|j>0(1− λP0)]βk, (15)

and the cross-region elasticity is given by

εij =
∂ logE(ni)

∂xjk
= −Pj|j>0(1− λP0)βk. (16)

We can now compare the own- and cross-region elasticities of the three models. Simple

inspection of elasticities (4), (5), (10), (11), (15) and (16) leads to the following observation.

Observation 6 The nested logit own-region and cross-region elasticities lie between their

conditional logit and Poisson counterparts.

Once more, we now move from the analysis of firm counts in individual regions to the

total number of firms that are active in the J regions. Using (14) and (12), we find that

E(n) = (n+ n0)
(
∑J

j=1 e
x′jβ)λ

eδ + (
∑J

j=1 e
x′jβ)λ

= (n+ n0)Pj>0.

The expected total number of firms active in the J regions is simply given by the share of

potential firms that decide to become active in one of those regions. As in the Poisson model,

the expected total number of firms is not generally equal to the observed total number of firms,

N , but depends on the regressors and parameters, including those for the outside option.9

The elasticity of the expected total firm count relative to a change in one of the K locational

characteristics of any particular region j is given by

εj =
∂ logE(n)

∂xjk
=
λeδex

′
jβ(
∑J

i=1 e
x′iβ)−1βk

eδ + (
∑J

i=1 e
x′iβ)λ

= λP0Pj|j>0βk.

Observation 7 Like the Poisson, the nested logit model implies that a change in a region’s

locational attractiveness will affect the total of firms summed across the J regions.

Here, the responsiveness of the aggregate firm number is due to the effect on the decisions

9As in the Poisson and conditional logit models, the predicted total number of firms among the J regions
at the estimated coefficients and actual data corresponds to the observed total: E(n|β̂, δ̂, λ̂) = N .
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Table 1: Comparing implied elasticities (case A)

Conditional Logit Nested Logit Poisson

εjj =
∂ logE(nj)

∂xjk
(1− Pj|j>0)βk [1− Pj|j>0(1− λP0)]βk βk

εij = ∂ logE(ni)
∂xjk

−Pj|j>0βk −Pj|j>0(1− λP0)βk 0

εj = ∂ logE(n)
∂xjk

0 λP0Pj|j>0βk Pj|j>0βk

Notes: Pj|j>0 = E(nj)/E(n), P0 = E(n0)/E(n+ n0)

taken by firms that would have chosen the outside option in the absence of a change in regional

attractiveness.

2.1.4 A synthesis of the three models

We can now pull together the salient features of the three models. First, we consider the

impact of a change in the attractiveness of an individual region on the number of firms in that

region and across the J − 1 remaining regions. Table 1 gathers the own-region, cross-region

and aggregate elasticities implied by the three models.

In order to compare these elasticities, we define ρ = 1 − λP0 which satisfies 0 ≥ ρ ≥ 1

under the standard nested logit assumption 0 < λ ≤ 1. We call ρ the rivalness parameter.

It allows us to write the nested logit elasticities as a linear combination of their conditional

logit and Poisson equivalents: εnlogitjj = ρεclogitjj + (1 − ρ)εPoissonjj , εnlogitij = ρεclogitij and εnlogitj =

(1−ρ)εPoissonj . The rivalness parameter therefore acts as a summary measure of the position of

the data generating process between the two polar cases, conditional logit (ρ = 1) and Poisson

(ρ = 0). One may think of ρ as capturing of the relative importance of the outside option: as

ρ → 0, competition among the J regions becomes unimportant relative to the weight of the

outside option, while with ρ→ 1, the outside option becomes negligible and any reallocations

have to occur within the set of the J regions.

We can also establish rankings of the elasticities implied by the three models. Provided

that β 6= 0, the ranking of own-region elasticities is (c.f. Observations 2 and 6)

|εPoissonjj | > |εnlogitjj | > |εclogitjj | > 0,

while the ranking of cross-regions elasticities is just the reverse (c.f. Observations 3 and 6),

|εclogitij | > |εnlogitij | > |εPoissonij | = 0.
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and the ranking of aggregate elasticities is again (c.f. Observations 4 and 7)

|εPoissonj | > |εnlogitj | > |εclogitj | > 0.

An alternative way of comparing the three models is to inspect the predicted counts.10 In

all three models the expected number of firms in region j can be written as

E(nj) = m · ex
′
jβ

where the multiplier m is given by

m =
n∑J

i=1 e
x′iβ

in the conditional logit,

m = eα = constant in the Poisson,

m =
n+ n0∑J
i=1 e

x′iβ
·

(
∑J

i=1 e
x′iβ)λ

eδ + (
∑J

i=1 e
x′iβ)λ

in the nested logit.

Nevertheless, given the data, the three models predict the same number of firms, as the

multiplier is estimated as m̂ = N/
∑J

i=1 e
x′iβ̂ in all three cases.11 This reflects the GFW

equivalence in Observation 1 and our equivalence in Observation 5. However, the multiplier

m reacts differently to changes in locational characteristics depending on the estimator chosen,

in line with our Observations 2, 3, 4, 6 and 7.

2.2 Case B: industry-specific locational determinants

Consider now that we observe K characteristics xsj for every region j and industry s. Hence,

we again do not observe firm-specific regional attributes, but we now allow for these attributes

to differ across groups of firms, best thought of as industries. We maintain the notation xj

for the subset of locational determinants that are constant across industries. Furthermore,

njs is the number of firms in region j and industry s, ns is the observed number of industry-s

firms across all regions, n is the total number of firms, and N stands for the corresponding

observed firm count in the sample.

The grouped conditional logit model is given by the probability that a given firm f of

industry s chooses region j rather than another region:

Pj|f = Pj|s =
ex
′
sjβ∑J

i=1 e
x′siβ

,

10We thank an anonymous referee for suggesting this elegant alternative approach.
11This is easily verified by plugging in the respective first-order conditions of the unconcentrated likelihood

functions: eα̂ = N/
∑J
i=1 e

x′iβ̂ and eδ̂ = N0/N(
∑J
i=1 e

x′iβ̂)λ̂.
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where
∑

j Pj|f = 1. Pj|s is the probability for a particular firm to choose region j given that

the firm belongs to industry s.

The grouped Poisson model is given by

E(nsj) = eαs+x
′
sjβ,

where αs is an industry-specific constant.

Finally, the grouped nested logit model is given by the probability that a given firm f of

industry s chooses either the outside option j = 0,

P0|s =
eδs

eδs + (
∑J

j=1 e
x′sjγ/λ)λ

=
eδs

eδs + (
∑J

j=1 e
x′sjβ)λ

,

or a particular domestic region j > 0,

Pj|s =
ex
′
sjβ(

∑J
i=1 e

x′siβ)λ−1

eδs + (
∑J

i=1 e
x′siβ)λ

= Pj>0|s · Pj|j>0,s = (1− P0|s)Pj|j>0,s,

where δs is an industry-specific constant, and β = γ/λ. Pj>0|s = 1 − P0|s is the probability

that a given industry-s firm chooses any domestic region j > 0, and

Pj|j>0,s =
ex
′
sjβ∑J

i=1 e
x′siβ

(17)

is the probability that such a firm chooses a particular domestic region conditional on not

choosing the outside option.

As in case A, the three models are observationally equivalent in a cross section of domestic

firm choices and yield identical estimates for the parameter vector β. This has been shown

by GFW for the grouped conditional logit and the grouped Poisson models, and we show it

in the Appendix for the grouped nested logit model.

Table 2 summarizes the implied elasticities in the three grouped models (see the Ap-

pendix for derivations). As in case A, the elasticities in the grouped nested logit model

are (industry-specific) linear combinations of their conditional logit and Poisson equivalents:

εnlogit.. = ρsε
clogit
.. + (1− ρs)εPoisson.. where ρs = 1− λP0|s.

3 Estimation

3.1 Elasticity bounds

We have shown that estimation of any of the three models will yield identical parameter esti-

mates β̂. The additional parameters λ and δ in the nested logit model are not identified but

12



Table 2: Comparing implied elasticities (case B)

Conditional Logit Nested Logit Poisson

Region-industry specific regressor xsjk:

(a)
∂ logE(nsj)

∂xsjk
βk(1− Pj|j>0,s) βk[1− Pj|j>0,s(1− λP0|s)] βk

(b) ∂ logE(nsi)
∂xsjk

−βkPj|j>0,s −βkPj|j>0,s(1− λP0|s) 0

(c) ∂ logE(ns)
∂xsjk

0 βkPj|j>0,sλP0|s βkPj|j>0,s

(d)
∂ logE(nj)

∂xsjk
βk(1− Pj|j>0,s)Ps|j βk[1− Pj|j>0,s(1− λP0|s)]Ps|j βkPs|j

(e) ∂ logE(ni)
∂xsjk

−βkPj|j>0,sPs|i −βkPj|j>0,s(1− λP0|s)Ps|i 0

(f) ∂ logE(n)
∂xsjk

0 βkPs|jPjλP0|s βkPs|jPj|j>0

Region specific regressor xjk:

(g)
∂ logE(nj)

∂xjk
βk
∑S

s=1(1− Pj|j>0,s)Ps|j βk
∑S

s=1[1− Pj|j>0,s(1− λP0|s)]Ps|j βk

(h) ∂ logE(ni)
∂xjk

−βk
∑S

s=1 Pj|j>0,sPs|i −βk
∑S

s=1 Pj|j>0,s(1− λP0|s)Ps|i 0

(i) ∂ logE(n)
∂xjk

0 βkPj

∑S
s=1(λP0|sPs|j) βkPj|j>0

Notes: Pj|j>0,s = E(nsj)/E(ns), P0|s = E(ns0)/E(ns + ns0), Ps|j = E(nsj)/E(nj). Ps|j is the
fraction of firms in industry s in a given region j.

irrelevant for the estimation of β. Hence, it is impossible to discriminate formally between

these three model based on cross-section data. And yet, the implied elasticities differ sub-

stantially. In previous research, reported elasticities were based either on the conditional logit

model or the Poisson model, without justification of the particular choice made or, mistakenly

in this respect, by referring to the equivalence of the two models as established by GFW.

What can researchers do if they are not willing to make this choice by assumption but

rely on cross-sectional data? We propose in this situation that one calculate the elasticities

of both the conditional logit and the Poisson model and report these predictions as bounds

for the true effects. As shown in Observation 6, intermediate values can be rationalized by a

nested logit model.

The computation of both conditional logit and Poisson elasticities requires that one calcu-

late predicted probabilities. In terms of case A (Table 1), the predicted probability is obtained

as follows:

P̂j|j>0 =
ex
′
j β̂∑J

i=1 e
x′iβ̂

, (18)
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while for case B (Table 2), three predicted probabilities are to be computed:

P̂j|j>0,s =
ex
′
sj β̂∑J

i=1 e
x′siβ̂

, (19)

P̂s|j =
ex
′
sj β̂+α̂s∑S

r=1 e
x′rj β̂+α̂r

=
NsP̂j|s

NP̂j|j>0

, (20)

P̂j|j>0 =

∑S
s=1 e

x′sj β̂+α̂s∑S
s=1

∑J
i=1 e

x′siβ̂+α̂s
=

∑S
s=1NsP̂j|s

N
. (21)

where α̂s = log[Ns/(
∑

j e
x′jsβ̂)] from the first-order condition of the unconcentrated Poisson

likelihood function.

3.2 An example

By way of an illustration, we take the data on location choices in Portugal by foreign-owned

plants used in Guimaraes et al. (2000, 2003), and we report the elasticities implied by the

coefficients of their regression model. The data cover a cross section of 758 location choices

among 275 Portuguese regions by firms belonging to one of 151 industries.12 Their region-

industry level regressor of main interest, xsjk, is “industry-specific agglomeration”, defined as

the share of regional employment in the same industry as the relevant firm. Their region level

regressor of main interest, xjk, is “total manufacturing agglomeration”, defined as the log of

aggregate manufacturing employment per square kilometer.

Taking their estimated parameters and computing the empirical probabilities (18)-(21),

we can calculate all the implied elasticities of Table 2. Since the probabilities (18)-(21) vary

by region and industry, we need to select specific cases for the computation of elasticities. We

provide illustrations for two base regions j: Lisbon, the largest region in terms of P̂j|j>0, and

Oleiros, the smallest region in terms of P̂j|j>0 that still had non-zero firm counts in the larger

industry considered.13

Table 3 shows the implied elasticities for changes in a region-industry specific regressor

and in a region specific regressor. We can take these estimates to illustrate Observations

2 to 4.14

12We follow GFW by referring to industry-year pairs as “industries”. The 151 industries in their data set
are combinations of 27 three-digit manufacturing sectors and seven sample years, ranging from 1985 to 1991.

13Where a comparison region i needs to be specified for the computation of cross elasticities, we choose
Porto, the second largest region in the data set. Where an industry s needs to be specified, we choose
Industrial Chemicals (ISIC 351) in 1989, the largest sector-year pair in the dataset (31 observed choices, i.e. 4
percent of the total of 758 choices).

14A note on the estimation of standard errors. In the Poisson model with group (industry) fixed effects,
large sample properties are usually derived assuming a large number of groups, S → ∞. In the conditional
logit model, one typically assumes a large number of individuals, N → ∞. The conventional standard errors
will therefore in practice differ between the two models. Clustering at the group level, however, will produce
identical standard errors. Such robust standard errors can either be estimated using asymptotic theory (cluster
generalization of Eicker-Huber-White) or through block-wise bootstrapping.
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Table 3: Comparing implied elasticities in an example of case B

large region j small region j

CL Poisson CL Poisson

Region-industry specific regressor xsjk:

(a)
∂ logE(nsj)

∂xsjk
2.9290 3.1883 3.18778 3.18832

(0.1978) (0.2364) (0.23632) (0.23640)

(b) ∂ logE(nsi)
∂xsjk

-0.2593 0 -0.00054 0

(0.0815) – (0.00014) –

(c) ∂ logE(ns)
∂xsjk

0 0.2593 0 0.00054

– (0.0815) – (0.00014)

(d)
∂ logE(nj)
∂xsjk

0.1110 0.1208 0.09624 0.09626

(0.0110) (0.0127) (0.01137) (0.01137)

(e) ∂ logE(ni)
∂xsjk

-0.0095 0 -0.00002 0

(0.0031) – (0.00001) –

(f) ∂ logE(n)
∂xsjk

0 0.0106 0 0.00002

– (0.0019) – (0.00000)

Region specific regressor xjk:

(g)
∂ logE(nj)

∂xjk
0.3873 0.42577 0.42548 0.42577

(0.0475) (0.0508) (0.05075) (0.05076)

(h) ∂ logE(ni)
∂xjk

-0.0378 0 -0.00004 0

(0.0048) – (0.00001) –

(i) ∂ logE(n)
∂xjk

0 0.0374 0 0.00010

– (0.0066) – (0.00001)

Notes: large region: j = Lisbon; small region: j = Oleiros; i = Porto in rows (e) and
(h); k = “industry-specific agglomeration” in rows (a) to (f), k = “total manufacturing
agglomeration” in rows (g) to (i); industry: s = ISIC 351 (Industrial Chemicals) in 1989
in rows (a) to (f); any industry in rows (g) to (i). Bootstrapped robust standard errors in
parantheses, 300 replications, clustered by industries.

• Observation 2: Own-region elasticities are larger in the Poisson model than in the

conditional logit (rows (a), (d) and (g)). We can see that the difference between implied

own-region elasticities is non-trivial for the large region (some 10 percent) but very small

for the small region (less than 0.1 percent). This illustrates that the difference between

implied own-region elasticities of the two models vanishes as the number of regions grows

large and individual regions therefore become small.

• Observation 3: All Poisson cross-region elasticities are zero (rows (b), (e) and (h)).

• Observation 4: In the conditional logit model, the total number of firms (across all of

Portugal) is invariant to changes in the values of xsjk or xjk whereas in the Poisson

model the total changes with xsjk or xjk (rows (c), (f) and (i)). The effect on the total

number of firms of a given change in xsjk is stronger if the change occurs in a large

region.
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These computations illustrate the qualitatively different predictions implied by the condi-

tional logit and Poisson models. With J = 275 spatial alternatives and s = 151 industries,

the underlying data set is highly disaggregated, implying relatively modest quantitative dif-

ferences between implied elasticities. Nonetheless, even here some of the differences are far

from negligible. Perhaps the most striking difference appears in row (c) of Table 3. A one-unit

change in xsjk of Lisbon leaves the number of Portuguese plants in industry s unchanged in

the conditional logit framework, while it increases by up to 29 percent in the Poisson model.

Policy makers ought not to ignore a difference of such magnitude.

4 Conclusions

We show that the three standard location choice models - conditional logit, nested logit and

Poisson - are observationally equivalent in terms of cross-section estimation yet imply starkly

different predictions.

Take a corporate tax cut in a particular region. Provided that this is perceived by firms

as making that region more attractive, all three models imply that the region itself will see an

increase in its number of firms. We show that the magnitude of the implied increase differs:

it is largest if the world is properly represented by the Poisson model, smallest if the world

conforms with the conditional logit, and somewhere in-between if the world is nested logit. In

a Poisson world, the tax cut will have no impact on firm counts in any other of regions within

the data set. It will, however, pull firms away from other regions in the conditional logit and

the nested logit cases. As the total number of firms is fixed in the conditional logit, the sum

of the firms pulled away from the other regions is the same as the increase in the number

of firms in the tax-cutting region itself. The nested logit again represents an intermediate

case, with some of the attracted firms relocating from elsewhere within the data set, implying

that regional corporate tax bases are “rival”; and some firms appearing from outside that

set, implying a “non-rival” tax base. The same logic can be applied to residential choices of

private households with respect, for instance, to changes in local property tax rates.

Empirical researchers should be aware of the interpretational ambiguity affecting estimated

parameters in standard location choice models, particularly if the number of locations and

industries distinguished in the data is small. It can therefore be useful to report both condi-

tional logit and Poisson elasticity estimates as bounds on the effects implied by the estimated

parameters.
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Appendix: Derivations for case B

Grouped conditional logit

The conditional logit model for grouped data is given by the probability that a given firm f
of industry s chooses region j

Pj|f = Pj|s =
ex
′
sjβ∑J

i=1 e
x′siβ

.

The log likelihood function is

logL(β) =
S∑
s=1

J∑
j=1

NsjPj|s =
S∑
s=1


J∑
j=1

Nsjx
′
sjβ −

J∑
j=1

[Nsj log
J∑
i=1

ex
′
siβ]

 .

The expected number of firms in region j and industry s is

E(nsj) = nsPj|s =
nse

x′sjβ∑J
i=1 e

x′siβ
.

and the corresponding own-region and cross-region elasticities within industry s are, respec-
tively,

∂ logE(nsj)

∂xsjk
= (1− Pj|s)βk,

∂ logE(nsi)

∂xsjk
= −Pj|sβk.

The expected number of firms in industry s is

E(ns) =

J∑
j=1

E(nsj) = ns = Ns,

and the corresponding elasticity within industry s is

∂ logE(ns)

∂xsjk
= 0.

The expected number of firms in region j is

E(nj) =

S∑
s=1

E(nsj) =

S∑
s=1

nsPj|s =

S∑
s=1

nse
x′sjβ∑J

i=1 e
x′siβ

.

The corresponding own-region and cross-region elasticities are for a region-industry specific
shock xsjk are

∂ logE(nj)

∂xsjk
=
∂ logE(nsj)

∂xsjk
· E(nsj)

E(nj)
= (1− Pj|s)Ps|jβk,

∂ logE(ni)

∂xsjk
=
∂ logE(nsi)

∂xsjk
· E(nsi)

E(ni)
= −Pj|sPs|iβk,

where Ps|j = E(nsj)/E(nj).
The own-region and cross-region elasticities for a region-specific shock xjk are

∂ logE(nj)

∂xjk
=

S∑
s=1

[
∂ logE(nsj)

∂xjk
· E(nsj)

E(nj)

]
= βk

S∑
s=1

(1− Pj|s)Ps|j ,
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∂ logE(ni)

∂xjk
=

S∑
s=1

[
∂ logE(nsi)

∂xjk
· E(nsi)

E(ni)

]
= −βk

S∑
s=1

Pj|sPs|i.

The expected total number of firms in all regions and industries is

E(n) =
S∑
s=1

J∑
j=1

E(njs) =
S∑
s=1

E(ns) = n,

and the corresponding elasticities for a region-industry specific shock xsjk and a region-specific
shock xjk are, respectively,

∂ logE(n)

∂xsjk
= 0,

∂ logE(n)

∂xjk
= 0.

Grouped Poisson

The Poisson model for grouped data is given as

E(nsj) = λsj = eαs+x
′
sjβ,

where αs is an industry-specific constant. The concentrated log likelihood function is

logL(β) =

S∑
s=1


J∑
j=1

Nsjx
′
iβ −

J∑
j=1

[Nsj log(

J∑
i=1

ex
′
siβ)]−

J∑
j=1

logNsj ! +Ns logNs

−N.
In expecations, the share of firms in region j for any given industry s is given by

Pj|s =
E(nsj)∑J
i=1E(nsj)

=
eαs+x

′
sjβ∑J

i=1 e
αs+x′siβ

=
ex
′
sjβ∑J

i=1 e
x′siβ

.

The own-region and cross-region elasticities within industry s are, respectively,

∂ logE(nsj)

∂xsjk
= βk,

∂ logE(nsi)

∂xsjk
= 0.

The expected number of firms in industry s is

E(ns) =

J∑
i=1

E(nsi) =

J∑
i=1

eαs+x
′
siβ =

J∑
i=1

E(nsi) =

J∑
i=1

eαs+x
′
siβ = eαs

J∑
i=1

ex
′
siβ,

and the corresponding elasticity within industry s is

∂ logE(ns)

∂xsjk
=

ex
′
sj∑J

i=1 e
x′siβ

βk = Pj|sβk.

The expected number of firms in region j is

E(nj) =
S∑
s=1

E(nsj) =
S∑
s=1

eαs+x
′
siβ.

The corresponding own-region and cross-region elasticities for a region-industry specific shock
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xsjk are
∂ logE(nj)

∂xsjk
=
∂ logE(nsj)

∂xsjk
· E(nsj)

E(nj)
= Ps|jβk,

∂ logE(ni)

∂xsjk
=
∂ logE(nsi)

∂xsjk
· E(nsi)

E(ni)
= 0,

where Ps|j = E(nsj)/E(nj).
The own-region and cross-region elasticities for a region-specific shock xjk are

∂ logE(nj)

∂xjk
=

S∑
s=1

[
∂ logE(nsj)

∂xjk
· E(nsj)

E(nj)

]
= βk,

∂ logE(ni)

∂xjk
=

S∑
s=1

[
∂ logE(nsi)

∂xjk
· E(nsi)

E(ni)

]
= 0.

The expected total number of firms in all regions and industries is

E(n) =
S∑
s=1

J∑
j=1

E(njs) =
S∑
s=1

E(ns) =
S∑
s=1

[
eαs

J∑
i=1

ex
′
siβ

]
,

and the corresponding elasticities for a region-industry specific shock xsjk and a region-specific
shock xjk are, respectively,

∂ logE(n)

∂xsjk
=
∂ logE(nsj)

∂xsjk
· E(nsj)

E(n)
= Ps|jPjβk,

∂ logE(n)

∂xjk
=
∂ logE(nj)

∂xjk
· E(nj)

E(n)
= Pjβk,

where Pj = E(nj)/E(n).

Grouped nested logit

The nested logit model for grouped data is given by the probability that firm f of industry s
chooses the outside option j = 0 or region j > 0 :

P0|s =
eδs

eδs + (
∑J

j=1 e
x′sjγ/λ)λ

=
eδs

eδs + (
∑J

j=1 e
x′sjβ)λ

,

Pj|s =
ex
′
sjβ(

∑J
i=1 e

x′siβ)λ−1

eδs + (
∑J

i=1 e
x′siβ)λ

= Pj>0|s · Pj|j>0,s = (1− P0|s)Pj|j>0,s,

where δs is an industry-specific constant, β = γ/λ and

Pj|j>0,s =
ex
′
sjβ∑J

i=1 e
x′siβ

.

The concentrated log likelihood function is

logL(β) =

S∑
s=1


J∑
j=1

Nsjx
′
sjβ −

J∑
j=1

[Nsj log

J∑
i=1

ex
′
siβ]

+ Ns0 log(Ns0) +Ns log(Ns)− (Ns +Ns0) log(Ns +Ns0)} .

The expected number of firms in domestic region j > 0 and industry s is

E(nsj) = (ns + ns0)Pj|s = (ns + ns0)(1− P0|s)Pj|j>0,s,

21



and the corresponding own-region and cross-region elasticities within industry s are, respec-
tively,

∂ logE(nsj)

∂xsjk
= [1− Pj|j>0,s(1− λP0|s)]βk,

∂ logE(nsi)

∂xsjk
= −Pj|j>0,s(1− λP0|s)βk.

The expected number of all domestic firms in industry s is

E(ns) =

J∑
j=1

E(nsj) = (ns + ns0)(1− P0|s),

and the corresponding elasticity within industry s is

∂ logE(ns)

∂xsjk
= λP0|sPj|j>0,sβk.

The expected number of firms in domestic region j is

E(nj) =

S∑
s=1

E(nsj) =

S∑
s=1

(ns + ns0)Pj|s.

The corresponding own-region and cross-region elasticities for a region-industry specific shock
xsjk are

∂ logE(nj)

∂xsjk
=
∂ logE(nsj)

∂xsjk
· E(nsj)

E(nj)
= [1− Pj|j>0,s(1− λP0|s)]Ps|jβk,

∂ logE(ni)

∂xsjk
=
∂ logE(nsi)

∂xsjk
· E(nsi)

E(ni)
= −Pj|j>0,s(1− λP0|s)Ps|iβk,

where Ps|j = E(nsj)/E(nj).
The own-region and cross-region elasticities for a region-specific shock xjk are

∂ logE(nj)

∂xjk
=

S∑
s=1

[
∂ logE(nsj)

∂xjk
· E(nsj)

E(nj)

]
= βk

S∑
s=1

[1− Pj|j>0,s(1− λP0|s)]Ps|j ,

∂ logE(ni)

∂xjk
=

S∑
s=1

[
∂ logE(nsi)

∂xjk
· E(nsi)

E(ni)

]
= −βk

S∑
s=1

Pj|j>0,s(1− λP0|s)Ps|i.

The expected total number of firms in all domestic regions and industries is

E(n) =
S∑
s=1

J∑
j=1

E(njs) =
J∑
j=1

E(nj),

and the corresponding elasticities for a region-industry specific shock xsjk and a region-specific
shock xjk are, respectively,

∂ logE(n)

∂xsjk
=

∂ logE(nsj)

∂xsjk
+

∑
i 6=j,i>0

∂ logE(nsi)

∂xsjk

 · E(nsj)

E(n)
= βkλP0|sPs|jPj ,

∂ logE(n)

∂xjk
=

∂ logE(nj)

∂xjk
+

∑
i 6=j,i>0

∂ logE(ni)

∂xjk

 · E(nj)

E(n)
= βkPj

S∑
s=1

(λP0|sPs|j),

where Pj = E(nj)/E(n).
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