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Abstract

As shown by Guimaraes, Figueiredo and Woodward (2003), a particular class of conditional

logit models yield identical parameter estimates to a Poisson count data model. In Schmid-

heiny and Brülhart (2011), we have pointed out that the conditional logit model and the

Poisson model can be seen as polar cases of a continuum of intermediate cases which emerge

from a random utility nested logit model. Herger and McCorriston (2013) have proposed

an alternative nested logit model. In this note, we show that their paper misrepresents our

model, that their alternative specification does not in fact nest the Poisson model, and that

their analysis contains a number of formal errors.

Highlights:

• The nested logit model in Schmidheiny and Brülhart (2011) is a random utility model

that nests the conditional logit and Poisson models.

• The nested logit model in Herger and McCorriston (2013) is a restricted version of

Schmidheiny and Brülhart (2011) that does not nest the Poisson model.

• The proposed estimation strategy in Herger and McCorriston (2013) is incorrect.
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1 Introduction

Location choice models explain the spatial distribution of agents such as firms or households as
the outcome of individual location decisions. The most popular representation of such choices is
McFadden’s (1974) conditional logit model. Guimaraes, Figueiredo and Woodward (2003) have
shown that a particular class of conditional choice models yield identical parameter estimates to
a Poisson count data model. Schmidheiny and Brülhart (2011, henceforth SB) show that, while
the two models are indeed observationally equivalent in cross-section data, they are distinctively
different descriptions of the world and imply different marginal effects and elasticities. SB also
show that the elasticities of the conditional logit model and the Poisson model can be seen as
polar cases of a continuum of intermediate cases which emerge from a random utility nested
logit model (RUNL). Herger and McCorriston (2013, henceforth HM) propose an alternative
nested logit model. They claim that their model, unlike the SB RUNL, allows the “dissimilarity
parameter” to be identified in cross-section data, thus making it possible to estimate how closely
the data correspond to the conditional logit or Poisson models. In this note, we show that HM
wrongly represent SB’s RUNL and that their proposed alternative specification is a restricted
version of SB which does not nest the Poisson model.

2 Conditional Logit and Poisson

Using the notation of HM, the basic framework in Guimaraes, Figueiredo and Woodward (2003)
is the following

• Firms i = 1, ..., N choose among h = 1, ...,H locations. h are e.g. states within a country.

• There are s = 1, ..., S different types of firms. s are e.g. industrial sectors or country of
origin for foreign firms.

• The number of firms nsh of each type s is observed in each location h. nsh is used to
denote both the observed number and the random variable in the data generating process.

• A vector of observable explanatory variables is denoted xsh, characterizing locations h and
potentially also differing across types s.

The location choice of an individual firm i is assumed to correspond to a conditional logit
model. Thus, the profit function

πish = x′shβ + εish (1)

consists of a type-specific deterministic part x′shβ and a stochastic part εish, which has zero
mean and is known to the firm but unknown to the econometrician. Firms choose the location
which yields the highest profit.

Comment 1 The expected profit function E(πish) in the conditional logit model does not con-
tain an error term as stated in HM eq. (1) and (2). It is not useful to include a constant (δs
in HM) or type-specific fixed effect in (1) as stated in HM eq. (2), because this type-specific
constant is not identified in the conditional logit model.

The conditional logit model contains the assumption that the stochastic term εish is inde-
pendent across i and h and follows an extreme value type 1 distribution. The conditional logit
model implies the following choice probabilities:

PCLsh =
ex
′
shβ∑H

g=1 e
x′sgβ

. (2)
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Comment 2 The choice probabilities in (2) are conditional on the type s. The denominator
in eq. 2 does not sum over the firm types s as stated in HM eq. (3). The double summation in
HM eq. (3) implies that the firm’s type s is a choice of the firm rather than a characteristic,
which is not what the basic framework assumes and which contradicts HM’s own decision rule
in HM eq. (1).

The conditional logit model only predicts probabilities (relative numbers) and not absolute
numbers of location choices, as it does not explicitly model the total number ns of firms of
each type. The total number ns of firms of type s is often implicitly assumed as given in the
conditional logit model. With exogenous ns, the expected absolute number of choices is

E(nCLsh ) = nsPsh. (3)

SB derive the effect of a change in the k-th characteristic xshk on the expected number of
firms of type s in location h as the following semi-elasticity:

ηCLsh =
∂logE(nCLsh )

∂xshk
=
∂E(nCLsh )

∂xshk

1

E(nCLsh )
= (1− Psh)βk, (4)

assuming an exogenous number ns of firms of each type.

Comment 3 (1−Psh)βk equals [∂E(nCLsh )/∂xshk]·[1/E(nCLsh )] and not [∂E(nCLsh )/∂xshk]·[xshk/E(nCLsh )]
as stated in HM eq. (10). This expression is a semi-elasticity if xshk is defined in levels and an
elasticity if xshk is defined in logs.1

Guimaraes, Figueiredo and Woodward (2003) introduce a Poisson count data model which
yields identical parameter estimates for the slope coefficients β. The Poisson approach directly
models the expected absolute number of choices:

E(nPCsh ) = eαs+x
′
shβ. (5)

The Poisson model is a distinctively different data generating process from the conditional logit
model and hence a different description of the world.

Comment 4 The type-specific constants αs in the Poisson model are unrelated to fixed effects
in the profit function (1) of the conditional logit model, contrary to the implied assertion by HM
eq. (2) and (5).2

In the Poisson model, the effect of a change in the k-th local characteristic xshk on the
expected number of firms of type s in location h as semi-elasticity is

ηPCsh =
∂logE(nPCsh )

∂xshk
=
∂E(nPCsh )

∂xshk

1

E(nCLsh )
= βk. (6)

Comment 5 βk equals [∂E(nPCsh )/∂xshk]·[1/E(nPCsh )] and not [∂E(nPCsh )/∂xshk]·[xshk/E(nPCsh )]
as stated in HM eq. (9). This expression is a semi-elasticity if xshk is defined in levels and an
elasticity if xshk is defined in logs.

1HM define xshk as reported in logs. We see no value added in restricting xshk to strictly positive values.
2We find the derivation of the Poisson model in HM to be formally incorrect and its interpretation to be

misleading. While the definition of the Poisson model in HM eq. (5) is accurate, it is not the result of multiplying
the CL probability in HM eq. (3) by its denominator. The constant term αs = exp(δs) in HM eq. (5) can
therefore not be related to the non-identified constant δs in HM eg. (2). We also find the interpretation in the

first line after HM eq. (7) misleading, because E(n̄PCs ) =
∑H
h=1 e

x′shβ is not the expected number of location

choices in the Poisson model (which instead is E(nPCs ) = E(
∑H
h=1 n

PC
sh ) =

∑H
h=1 e

αs+x′shβ). Moreover, while the
ML estimator of αs in HM eq. (7) is correct, it cannot be interpreted as the “discrepancy” between expected and
observed numbers of observations.
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3 The RUNL

In SB, we have proposed the following random utility nested logit (RUNL) model.3 The profit
of a firm i of type s in location h = 1, ...,H is given by

πish = x′shγs + εish = x′shβλs + εish, (7)

where the reparametrization γs = βλs is described in SB, p. 216.4 This reparametrization,
in combination with the assumptions that β is constant across types s and γs is type-specific,
formally allows us to relate the coefficient vector β to both the CL and the Poisson model. The
RUNL model of SB moreover considers an outside option h = 0, which can be interpreted as
locating in another country or not starting up a company. The outside option yields profit

πiso = δs + εiso. (8)

It is assumed in the RUNL model that the stochastic term εish follows a special type of general-
ized extreme value (GEV) distribution (see McFadden, 1978) such that all locations h = 1, ...,H
belong to one nest and the outside option h = 0 belongs to another (degenerate) nest. Following
Amemiya (1985, p. 303, eq. 9.3.60) the choice probabilities are then expressed as:5

PRUNLsh = (1− PRUNLso ) · PRUNLsh|ø for all h > 0, (9)

PRUNLso =
eδs

eδs +
(∑H

g=1 e
x′sgγs/λs

)λs =
eδs

eδs +
(∑H

g=1 e
x′sgβ

)λs , and (10)

PRUNLsh|ø =
ex
′
shγs/λs∑H

g=1 e
x′sgγs/λs

=
ex
′
shβ∑H

g=1 e
x′sgβ

, (11)

where PRUNLsh|ø is the probability of choosing location h > 0 conditional on not choosing the

alternative. The parameter λs can be interpreted as λs =
√

1− ρs, where ρs is the correlation
of the stochastic term εish within the choices h > 0. Note that this version of the RUNL is
fully general; other versions of the nested logit model which are consistent with a random utility
model are just reparametrizations of this specification.

Comment 6 Adding a constant ∆ to the profit functions of all choice options h = 0, 1, ...,H
does not alter the choice probabilities in the SB RUNL. HM p. 290 wrongly state the opposite,
implying that the SB nested logit is not a RUNL.

The nested logit (NL) model in Hunt (2000) encompasses specifications which are consistent
with a random utility model and others which are not:

PNLsh = (1− PNLso ) · PNLsh|ø for all h > 0, (12)

PNLso =

(
eδsς

o
s
)λos

(eδsςos )
λos +

(∑H
g=1 e

x′sgβsς
ø
s

)λø
s/ς

ø
s
, and (13)

3The term random utility nested logit model is taken from Heiss (2002).
4 In SB Section 2.2, we assume that λs = λ is not type-specific. The generalization used here is trivial and has

no empirical content, as λs is not identified independently of type-specific δs. All results in SB hold unchanged
and no additional results can be derived with type-specific λs.

5See also McFadden (1977, p. 6, eq. 20), Anderson, de Palma, Thisse (1992, p. 46, eq. 2.39), Koppelman and
Wen (1998, p. 290, eq. 4), Heiss (2002, p. 234, eq. 10), or Train (2009, p. 80, eq. 4.2).
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PNLsh|ø =
ex
′
shβsς

ø
s∑H

g=1 e
x′sgβsς

ø
s
. (14)

The RUNL in SB is a special case of the Hunt (2000) NL model with βs = β, λø
s = λs, λ

o
s = 1,

ςø
s = 1 and ςos = 1.

In the SB RUNL, the expected number of firms of type s in location h is

E(nRUNLsh ) = (nso+sø)PRUNLsh , (15)

where nso+sø is the exogenous total number of firms of type s which choose either h > 0 or
h = 0. The total, nso+sø, is typically unobservable. The semi-elasticity of a change in the k-th
local characteristic xshk on the expected number of firms of type s in location h > 0 is

ηRUNLsh =
∂logE(nRUNLsh )

∂xshk
= [1− PRUNLsh|ø (1− λsPRUNLso )]βk. (16)

The RUNL elasticity ηRUNLsh equals the CL elasticity if λs = 0 and the Poisson elasticity if
λs = 1 and δs → ∞, hence PRUNLso = 1. The SB RUNL therefore nests the conditional logit
model, the Poisson model and the continuum of cases in-between.

4 The Herger and McCorriston RUNL

The NL model proposed in HM is a special case of the Hunt (2000) NL model with βs = β,
λø
s = λs, λ

o
s = λs, ς

ø
s = 1, ςos = 0 and/or δos = 0, resulting in (see HM eq. 20 and 21)

PHMsh = (1− Pso) · Psh|ø =
ex
′
shβ
(∑H

g=1 e
x′sgβ

)λs−1

1 +
(∑H

g=1 e
x′sgβ

)λs for all h > 0, (17)

PHMso =
1λs

1λs +
(∑H

g=1 e
x′sgβ

)λs =
1

1 +
(∑H

g=1 e
x′sgβ

)λs , and (18)

PHMsh|ø =
ex
′
shβ∑H

g=1 e
x′sgβ

.6 (19)

Comparing (10) and (18) shows that the HM specification is a restricted version of the SB RUNL
with the implicit restriction δs = 0 for all s.

Comment 7 The HM RUNL is a restricted version of the fully general SB RUNL. There is no
parameter to control for the value of the outside option in general, and the value of the outside
option is assumed to be identical across types s.

The semi-elasticity in the HM RUNL is identical to the one in the SB RUNL in eq. (16) but
with PHMsh|ø and PHMsh|0 in place of PRUNLsh|ø and PRUNLsh|0 , respectively:

ηHMsh =
∂logE(nHMsh )

∂xshk
= [1− PHMsh|ø (1− λsPHMso )]βk. (20)

This semi-elasticity cannot be equal to the one of the Poisson model (eq. 6), because PHMso < 1
(strictly) in eq. (18) and hence 1− λsPHMso 6= 0.

6Setting ςos = 0 has the same effect as setting δos = 0 in eq. (13).
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Comment 8 The HM RUNL model does not nest the Poisson model. It cannot in fact be used
to study the main question at hand: the equivalence of the CL and Poisson models. The elasticity
in HM eq. (24) and Appendix B is incorrect.7

5 Estimation

Guimaraes, Figueiredo and Woodward (2003) show that the conditional logit model (2) and the
Poisson model (5) have identical concentrated likelihood functions (up to a additive constant)
for the parameter vector β when the estimation is based on one cross-section of observations of
nsh, h = 1, ...,H. SB show in Appendix A.3 that this is also true for the coefficient vector β in
the RUNL model, assuming λs = λ (see also footnote 4). It is straightforward to show that this
result also holds for type-specific λs.

8 Based on data for h > 0, the three models are therefore
observationally equivalent while the implied marginal effects and elasticities differ. Note that
the nested logit parameters δs and λs in the SB RUNL are not identified without observing nso.
If nso were observed, either λs or δs would be identified but not independently. In practice, nso
is typically unknown. For example, the number of potential firms that could start up but do
not materialize cannot be observed. So, in practice, neither λs nor δs are identified.

Unlike in the SB RUNL, λs is identified in the HM RUNL for the (unlikely) case that nso were
observed. So, as usual, parameter restrictions (here δs = 0) help identify structural parameters.
But, as shown in Comment 8, the restriction δs = 0 is not a useful one in this framework. The
ML estimator of λs with the HM restriction δs = 0 is

λ̂s =
log (nsø/nso)

log[
∑H

h=1 exp(x
′
shβ̂)]

, (21)

where nsø =
∑H

h=1 nsh and β̂ is the ML estimator of β (see the derivation in the Appendix).
HM propose a different estimator for λs in HM eq. (23). Substituting HM eq. (7) and eq. (21)
into HM eq. (23) yields:9

λ̂s =
log (nsø)

log[
∑H

h=1 exp(x
′
shβ̂)]

, (22)

Comment 9 The estimator of λs in HM eq. (23) implicitly assumes that the number of firms
choosing the outside option equals one, nso = 1. We cannot see a justification for this assumption
in a typical application.

Brülhart and Schmidheiny (2015) show how a panel of observations of nsht over multiple
time periods t allows the researcher to identify a single parameter ρs which is a function of both
δs and λs without the need to observe nsot.

7The correct elasticity in the HM model is ∂logE(nHMsh )/∂log xshk = [1 − PHMsh|ø (1 − λPHMso )]βk · xshk, which

contains the term PHMso . The definitions E(Nø) ≡
∑H
g=1 e

x′sgβ (HM, eq. 20), and E(N) ≡ 1 + E(Nø)λs (HM, eq.
22) ares not meaningful, and we see no formal basis for HM eq. (23).

8Sketch of proof: Solve the first order condition ∂ logL(β, δ, λ)/∂δs for δs. Plug the resulting δs into
logL(β, δ, λ) for all s. λs cancels out in the resulting concentrated likelihood function logL(β).

9HM equation (21) implicitly defines E(nø) =
∑S
s=1

∑H
h=1 exp(x

′
shβ̂). According to our comment 2 this should

actually read E(nsø) =
∑H
h=1 exp(x

′
shβ̂). HM eq. (7) estimates α̂s = nsø/

∑H
h=1 exp(x

′
shβ̂). Plugging these two

elements in HM eq. (23) yields our eq. (22).
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6 Appendix

The log likelihood function of the HM RUNL is

logL(β, λ) =
S∑
s=0

[
nso log(PHMso ) +

H∑
h=1

nsh log(PHMsh )

]

=
S∑
s=0

[
nso log

(
1

1 + eIVsλs

)
+

H∑
h=1

nsh log

(
ex
′
shβeIVs(λs−1)

1 + eIVsλs

)]

where IVs = log
∑H

g=1 e
x′sgβ is often called the inclusive value.

The first order condition with respect to λs is for all s

∂ logL(β, λ)

∂λs
= −nso

IVse
IVsλs

1 + eIVsλs
+

H∑
h=1

nsh

(
IVs −

IVse
IVsλs

1 + eIVsλs

)
= 0.

Solving the first order condition for λs yields

λs =
log (nsø/nso)

IVs
.

Plugging λs into the log likelihood function gives the concentrated log likelihood function

logL(β) =
S∑
s=1

[
H∑
h=1

nshx
′
shβ − nsø log

(
H∑
h=1

ex
′
shβ

)
+ nso log(nso) + nsø log(nsø)− (nso + nsø) log(nso + nsø)]

which is a function of β only and which is up to a constant identical to the concentrated likelihood
functions of the conditional logit, the Poisson and the SB RUNL models. Hence all four models
yield identical ML estimates for β.
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