Heteroskedasticity in the Linear Model

1 Introduction

This handout extends the handout on “The Multiple Linear Regression model” and refers to its definitions and assumptions in section 2.

This handouts relaxes the homoscedasticity assumption (\(OLS_4a\)) and shows how the parameters of the linear model are correctly estimated and tested when the error terms are heteroscedastic (\(OLS_4b\)).

2 The Econometric Model

Consider the multiple linear regression model for observation \(i = 1, \ldots, N\)

\[
y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_K x_{iK} + u_i
\]

where \(x_{i0}, x_{i1}, \ldots, x_{iK}\) are \(K\) explanatory variables and a constant, \(\beta_0, \beta_1, \ldots, \beta_K\) are \(K + 1\) parameters and \(u_i\) is called the error term.

Assume \(OLS1, OLS2, OLS3\) and

\[OLS4: \text{Error Variance}\]

b) \(V[u_i \mid x_i] = \sigma_i^2 = \sigma^2 \omega_i = \sigma^2 \omega(x_{i1} \ldots x_{iK}) < \infty\)

(condit. heteroscedasticity)

where \(\omega(.)\) is a function constant across \(i\). The decomposition of \(\sigma_i^2\) into \(\omega_i\) and \(\sigma^2\) is arbitrary but useful.
Heteroskedasticity in the Linear Model

Note that under OLS2 (i.i.d. sample) the errors are unconditionally homoscedastic, \(V[u_i] = \sigma^2 \) but allowed to be conditionally heteroscedastic, \(V[u_i|x_i] = \sigma_i^2 \). Assuming OLS2 and OLS3c provides that the errors are also not conditionally autocorrelated, i.e. \(\forall i \neq j : \text{Cov}[u_i, u_j|x_{i1}...x_{iK}, x_{j1}...x_{jK}] = 0 \). Also note that the conditioning on \(x_i \) is less restrictive than it may seem: if the conditional variance \(V[u_i|x_i] \) depends on other exogenous variables (or functions of them), we can include these variables in \(x_i \) and set the corresponding \(\beta \) parameters to zero. We also augment OLS5:

\[
\text{OLS5: Identifiability}
\]

\[
(x_{i0}, x_{i1}, \cdots, x_{iK}) \text{ are not linearly dependent}
\]

\[
0 < V[x_{ik}] < \infty \text{ and } 0 < \hat{V}[x_{ik}] < \infty \text{ for all } k > 0
\]

\[
(\sqrt{\omega_i}, \sqrt{\omega_i} x_{i1}, \cdots, \sqrt{\omega_i} x_{iK}) \text{ are not linearly dependent}
\]

\[
E[\omega_i x_{ik}^2] < \infty \text{ for all } k > 0
\]

3 A Generic Case: Groupwise Heteroskedasticity

Heteroskedasticity is sometimes a direct consequence of the construction of the data. Consider the following linear regression model with homoscedastic errors

\[
y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_K x_{iK} + u_i
\]

with \(V[u_i|x_i] = V[u_i] = \sigma^2 \).

Assume that instead of the individual observations \(y_i \) and \(x_i \) only the means \(y_g \) and \(x_g \) for \(g = 1, \ldots, G \) groups are observed. The error term in the resulting regression model

\[
y_g = \beta_0 + \beta_1 x_{g1} + \cdots + \beta_K x_{gK} + u_g
\]

is now conditionally heteroskedastic with \(V[u_g|N_g] = \sigma_g^2 = \sigma^2/N_g \), where \(N_g \) is a random variable with the number of observations in group \(g \).
4 Estimation with OLS

The parameters $\beta_0, \beta_1, \ldots, \beta_K$ can be estimated with the usual OLS estimator.

For the bivariate regression model, they are calculated as

$$\hat{\beta}_1^{OLS} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$\hat{\beta}_0^{OLS} = \bar{y} - \hat{\beta}_1 \bar{x}$$

The OLS estimator of β remains unbiased under $OLS1$, $OLS2$, $OLS3c$, $OLS4b$, and $OLS5$ in small samples. Additionally assuming $OLS3a$, it is normally distributed in small samples. It is consistent and approximately normally distributed under $OLS1$, $OLS2$, $OLS3d$, $OLS4a$ or $OLS4b$ and $OLS5$, in large samples. However, the OLS estimator is not efficient any more. More importantly, the usual standard errors of the OLS estimator and tests (t-, F-, z-, Wald-) based on them are not valid any more.

5 Estimating the Variance of the OLS Estimator

The small sample variance $V[\hat{\beta}_k^{OLS}|x_{11}, \ldots, x_{NK}]$ of $\hat{\beta}_k^{OLS}$ differs from the usual OLS one under $OLS4b$. For the bivariate regression model, it is

$$V[\hat{\beta}_1|x_{11}, \ldots, x_{NK}] = \frac{\sum_{i=1}^{N} \sigma^2 \omega_i(x_i - \bar{x})^2}{[\sum_{i=1}^{N} (x_i - \bar{x})^2]^2} = \frac{\sum_{i=1}^{N} \sigma^2 \cdot \omega(x_i) \cdot (x_i - \bar{x})^2}{[\sum_{i=1}^{N} (x_i - \bar{x})^2]^2}$$

which differs from the usual OLS estimator

$$V[\hat{\beta}_1|x_{11}, \ldots, x_{NK}] = \frac{\sigma^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

Consequently, the usual estimator $\hat{V}[\hat{\beta}_k^{OLS}|x_{11}, \ldots, x_{NK}]$ is biased. Usual small sample test procedures, such as the F- or t-Test, based on the usual estimator are therefore not valid.
The OLS estimator is asymptotically normally distributed under OLS_1, OLS_2, OLS_3d, and OLS_5

$$\sqrt{N}(\hat{\beta}_k - \beta_k) \xrightarrow{d} N(0, \varsigma^2)$$

where for the bivariate regression model, $\varsigma^2 = E[u_i^2(x_i - Ex_i)^2]/[\sigma_x^2]^2$ and $\sigma_x^2 = V[x_i] = E[x_i - Ex_i]^2$. The OLS estimator is therefore approximately normally distributed in large samples as

$$\hat{\beta}_k \sim N(\beta_k, Avar[\hat{\beta}_k])$$

where $Avar[\hat{\beta}_k] = \varsigma^2/N$ can be consistently estimated with some additional assumptions on higher order moments of x_i (see White 1980). For the bivariate regression model, the White estimator is

$$Avar[\hat{\beta}_1] = \frac{\sum_{i=1}^{N} \hat{u}_i^2(x_i - \bar{x})^2}{[\sum_{i=1}^{N} (x_i - \bar{x})^2]^2}$$

This so-called White or Eicker-Huber-White estimator of the covariance matrix is a heteroskedasticity-consistent covariance matrix estimator that does not require any assumptions on the form of heteroscedasticity (though we assumed independence of the error terms in OLS_2). Standard errors based on the White estimator are often called robust. We can perform the usual z- and Wald-test for large samples using the White covariance estimator.

Note: t- and F-Tests using the White covariance estimator are only asymptotically valid because the White covariance estimator is consistent but not unbiased. It is therefore more appropriate to use large sample tests (z, Wald).

Bootstrapping (see the handout on “The Bootstrap”) is an alternative method to estimate a heteroscedasticity robust covariance matrix.
6 Testing for Heteroskedasticity

There are several tests for the assumption that the error term is homoskedastic. White (1980)’s test is general and does not presume a particular form of heteroskedasticity. Unfortunately, little can be said about its power and it has poor small sample properties unless the number of regressors is very small. If we have prior knowledge that the variance σ_i^2 is a linear (in parameters) function of explanatory variables, the Breusch-Pagan (1979) test is more powerful. Koenker (1981) proposes a variant of the Breusch-Pagan test that does not assume normally distributed errors.

Note: In practice we often do not test for heteroskedasticity but directly report heteroskedasticity-robust standard errors.

7 Estimation with GLS/WLS when ω_i is Known

When ω_i is known, β is efficiently estimated with generalized least squares (GLS). The GLS estimator $\hat{\beta}^{GLS}$ simplifies in the case of heteroskedasticity to the weighted least squares (WLS) estimator $\hat{\beta}^{WLS}$ which is calculated as an OLS regression of a transformed dependent variable \tilde{y} on transformed explanatory variables $\tilde{x}_i, \tilde{x}_{i1}, \ldots, \tilde{x}_{iK}$ where

$$\tilde{y}_i = y_i / \sqrt{\omega_i} \quad \text{and} \quad \tilde{x}_{ik} = x_{ik} / \sqrt{\omega_i}$$

Note: the above transformation of the explanatory variables also applies to the constant, i.e. $\tilde{x}_{i0} = 1 / \sqrt{\omega_i}$. The OLS regression using the transformed variables does not include an additional constant.

The WLS estimator minimizes the sum of squared residuals weighted by $1/\omega_i$:

$$S(\beta_0, \ldots, \beta_K) = \sum_{i=1}^{N} \frac{1}{\omega_i} [y_i - (\beta_0 + \beta_1 x_{i1} + \cdots + \beta_K x_{iK})]^2 \to \min_{\beta_0, \ldots, \beta_K}$$
The WLS estimator of β is unbiased and efficient (under OLS1, OLS2, OLS3c, OLS4b, and OLS5) and normally distributed additionally assuming OLS3a (normality) in small samples.

The WLS estimator of β is consistent, asymptotically efficient and approximately normally distributed under OLS4b (conditional heteroscedasticity) and OLS2, OLS1, OLS3d, and a modification of OLS5

OLS5: Identifiability

$(\tilde{x}_{i0}, \tilde{x}_{i1}, \cdots, \tilde{x}_{iK})$ are not linearly dependent and $0 < V[\tilde{x}_{ik}] < \infty$ and $0 < \tilde{V}[\tilde{x}_{ik}] < \infty$ for all $k > 0$

The variance of $\hat{\beta}_K^{WLS}$ is estimated as the usual OLS estimator in the transformed variables \tilde{y} and \tilde{x}_k. For the bivariate regression model, it is

$$\hat{V}[\hat{\beta}_1^{WLS}|x_{11}, \ldots, x_{NK}] = \frac{\hat{\sigma}^2}{\sum_{i=1}^{N}(\tilde{x}_i - \bar{x})^2}$$

where in small samples

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{N} \hat{\bar{u}}_i^2}{N - K - 1} = \frac{\sum_{i=1}^{N} \hat{\bar{u}}_i^2}{N - 2}$$

and in large samples

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{N} \hat{\bar{u}}_i^2}{N}$$

and $\hat{\bar{u}}_i = \tilde{y}_i - (\hat{\beta}_0^{GLS} + \hat{\beta}_1^{GLS} \tilde{x}_{i1} + \cdots + \hat{\beta}_K^{GLS} \tilde{x}_{iK})$. Usual tests ($t$-, F-) for small samples are valid (under OLS1, OLS2, OLS3a, OLS4b and OLS5; usual tests (z, Wald) for large samples are also valid (under OLS1, OLS2, OLS3d, OLS4b and OLS5).

8 Estimation with GLS/WLS when ω_i is Unknown

In practice, ω_i is typically unknown. However, we can model the ω_i’s as a function of the data and estimate this relationship. Feasible general-
ized least squares (FGLS) replaces ω_i by their predicted values $\hat{\omega}_i$ and calculates then $\hat{\beta}_{FGLS}$ as if ω_i were known.

A useful model for the error variance is

$$\sigma_i^2 = V[u_i|z_{i1},...,z_{iL}] = e^{\delta_0 + \delta_1 z_{i1} + ... + \delta_L x_{iL}}$$

where $z_{i0},...,z_{iL}$ are $L + 1$ variables that may belong to $x_{i0},...,x_{iK}$ including a constant and $\delta_0,...,\delta_L$ are parameters. We can estimate the auxiliary regression

$$\hat{u}_i^2 = e^{\delta_0 + \delta_1 z_{i1} + ... + \delta_L x_{iL} + \nu_i}$$

by nonlinear least squares (NLLS) where $\hat{u}_i = y_i - (\hat{\beta}_0^{OLS} + \hat{\beta}_1^{OLS} x_{i1} + ... + \hat{\beta}_K^{OLS} x_{iK})$ or alternatively,

$$\log(\hat{u}_i^2) = \delta_0 + \delta_1 z_{i1} + ... + \delta_L x_{iL} + \nu_i$$

by ordinary least squares (OLS). In both cases, we use the predictions

$$\hat{\omega}_i = e^{\delta_0 + \delta_1 z_{i1} + ... + \delta_L x_{iL}}$$

in the calculations for $\hat{\beta}_{FGLS}$ and $\text{Avar}[\hat{\beta}_{FGLS}]$.

The FGLS estimator is consistent and approximately normally distributed in large samples under $\text{OLS}1$, $\text{OLS}2$ ($\{x_i, z_i, y_i\}$ i.i.d.), $\text{OLS}3d$, $\text{OLS}4b$, $\text{OLS}5$ and some additional more technical assumptions. If σ_i^2 is correctly specified, β_{FGLS} is asymptotically efficient and the usual tests (z, Wald) for large samples are valid; small samples tests are only asymptotically valid and nothing is gained from using them. If σ_i^2 is not correctly specified, the usual covariance matrix is inconsistent and tests (z, Wald) invalid. In this case, the White covariance estimator used after FGLS provides consistent standard errors and valid large sample tests (z, Wald).

Note: In practice, we often choose a simple model for heteroscedasticity using only one or two regressors and use robust standard errors.
Implementation in Stata 14

Stata reports the White covariance estimator with the `robust` option, e.g.

```stata
webuse auto.dta
regress price mpg weight, vce(robust)
matrix list e(V)
```

Alternatively, Stata estimates a heteroscedasticity robust covariance using a nonparametric bootstrap. For example,

```stata
regress price mpg weight, vce(bootstrap, rep(100))
matrix list e(V)
```

The White (1980) test for heteroskedasticity is implemented in the post-estimation command

```stata
estat imtest, white
```

The Koenker (1981) version of the Breusch-Pagan (1979) test is implemented in the postestimation command `estat hettest`. For example,

```stata
estat hettest weight foreign, iid
```

assumes $\sigma_i^2 = \delta_0 + \delta_1 weight_i + \delta_2 foreign_i$ and tests $H_0: \delta_1 = \delta_2 = 0$. WLS is estimated in Stata using analytic weights. For example,

```stata
regress depvar indepvars [aweight = 1/w]
```
calculates the WLS estimator assuming ω_i is provided in the variable w. Recall that we defined $\sigma_i^2 = \sigma^2 \omega_i$ (mind the squares). The analytic weight is proportional to the inverse variance of the error term. Stata internally scales the weights s.t. $\sum 1/\omega_i = N$. The reported Root MSE therefore reports $\hat{\sigma}^2 = (1/N) \sum \hat{\sigma}_i^2$.

FGLS/FWLS is carried out step by step:

1. Estimate the regression model $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_K x_{iK} + u_i$ by OLS and predict the residuals $\hat{u}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_K x_{iK})$

2. Use the residuals to estimate a regression model for the error variance, e.g. $log(\hat{\sigma}_i^2) = \delta_0 + \delta_1 z_{i1} + \ldots + \delta_L z_{iL} + \nu_i$, and to predict the
individual error variance, e.g. \(\hat{\omega}_i = e^{\hat{\delta}_0 + \hat{\delta}_1 z_{i1} + \ldots + \hat{\delta}_L z_{iL}} \)

3. perform a linear regression using the weights \(1/\hat{\omega}_i \)

For example,

```
regress price mpg weight
predict e, residual
generate loge2 = log(e^2)
regress loge2 weight foreign
predict zd
generate w=exp(zd)
regress price mpg weight [aweight = 1/w]
```

Implementation in R

R reports the Eicker-Huber-White covariance after estimation using the two packages `sandwich` and `lmtest`

```
> library(foreign)
> fm <- lm(price~mpg+weight, data=auto)
> library(sandwich)
> library(lmtest)
> coeftest(fm, vcov=sandwich)
```

\(F \)-tests for one or more restrictions are calculated with the command `waldtest` which also

```
> waldtest(fm, "weight", vcov=sandwich)
```

tests \(H_0 : \beta_1 = 0 \) against \(H_A : \beta_1 \neq 0 \) with Eicker-Huber-White, and

```
> waldtest(fm, .~-weight-displacement, vcov=sandwich)
```

tests \(H_0 : \beta_1 = 0 \) and \(\beta_2 = 0 \) against \(H_A : \beta_1 \neq 0 \) or \(\beta_2 \neq 0 \).
References

Introductory textbooks

Advanced textbooks
Cameron, A. Colin and Pravin K. Trivedi (2005), Microeconometrics: Methods and Applications, Cambridge University Press. Sections 4.5.

Companion textbooks

Articles