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Instrumental Variables

1 Introduction

This handout extends the handout on ”The Multiple Linear Regression

Model” and refers to its definitions and assumptions in section 2. It dis-

cusses the violation of the exogeneity assumption (OLS3), its consequences

and the potential solution through the use of instrumental variables.

In many applications of the linear model, we suspect that some regres-

sors are endogenous, i.e. one or more regressors are correlated with the

error term, Cov[xik, ui] 6= 0. In this situation, OLS cannot consistently

estimate the causal effect of the regressor on the dependent variable.

Sometimes, we are able to find exogenous variables zi` which are cor-

related with the endogenous regressor but not correlated with the error

term, i.e. Cov[zi`, ui] = 0. Such variables zi` are called instrumental vari-

ables or instruments. If there are enough good such instruments, we can

estimate the causal effect of the regressor on the dependent variable.

2 Canonical Examples

2.1 Omitted Variables

Consider the following regression model

yi = x′i1β1 + xi2β2 + vi

which conforms with standard OLS assumptions. Suppose that the vari-

able x2 is not observed. The estimated regression model is therefore

yi = x′i1β1 + ui
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where ui = xi2β2 + vi. Regressors xk in x1 are therefore correlated with

the error term u if they are correlated with the omitted variable x2. In

case xi1 and xi2 are scalars, cov(xik, ui) = β2cov(xik, xi2).

2.2 Simultaneity and Reversed Causality

Consider the following system of equations

yi1 = z′i1β1 + yi2γ1 + ui1

yi2 = z′i2β2 + yi1γ2 + ui2

where we assume that both z1 and z2 are uncorrelated with both u1

and u2. This system is called a structural simultaneous equation system

since y1 and y2 are simultenously determined. The regressor y2 depends

on y1 through the second equation. As y1 is directly dependent on u1,

the regressor y2 is also correlated with u1 and hence endogenous in the

first equation. Assuming that u1 and u2 are uncorrelated, cov(yi2, u1) =

[γ2/(1−γ1γ2)]σ2
u1

. The above equation system is also described as reversed

causality because the dependent variable y1 has a feedback effect on the

regressor y2.

In the above example z2 and z1 are straightforward instruments for

IV estimation of the first and second equation, respectively.1

2.3 Measurement Errors (Errors in Variables)

Consider the true regression model

yi = γ0 + β1x
∗
i + u∗i

1Instead of estimating the single structural equations directly by IV it is possible

to formulate and estimate a so-called reduced form of the above equation system. The

RHS of the reduced form equations consists of exogenous variables only. If the system

is identified, the parameters in the structural form can be deduced from the estimated

parameters in the reduced form.
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which conforms the standard OLS assumptions. Suppose that the variable

x∗ is only observed with an error

xi = x∗i + vi

where the error v is uncorrelated with x∗ and with u∗i . The estimated

regression model uses x as a proxy for x∗

yi = γ0 + β1xi + ui

where ui = u∗i − β1vi. The regressor x is therefore correlated with the

error term u as both depend on v. Assuming independence between v and

u∗, the covariance in the above example is cov(x, u) = −β1σ2
v .

In this special case of a bivariate regression, the OLS estimator is

“biased towards zero” as

|plim β̂1| = |β1|
1

1 + V (vi)
V (xi)

< |β1|.

3 The Econometric Model

Consider the multiple linear regression model for observations i = 1, ..., N

yi = x′iβ + ui

where yi is the dependent variable, x′i is a (K +M + 1)-dimensional row

vector of a constant, K endogenous explanatory variables and M exoge-

nous explanatory variables. β is a (K+M+1)-dimensional column vector

of parameters, and ui is the error term. Each observation is furthermore

described by a (L + M + 1)-dimensional row vector z′i of a constant,

L additional exogenous variables and the M exogenous regressors. The

(L+M) variables in zi are called instruments. The L additional variables

in zi which are not included in xi are called excluded instruments. Some-

times only those L variables are called instruments. The whole sample is

summarized in y′ = [y1 ... yN ], X ′ = [x1 ... xN ] and Z ′ = [z1 ... zN ].
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The data generation process (dgp) is fully described by the following set

of assumptions:

IV1: Linearity

yi = x′iβ + ui and E[ui] = 0

IV2: Independence

{xi, zi, yi}Ni=1 i.i.d. (independent and identically distributed)

IV2 means that regressors, instruments and dependent variables are inde-

pendent across observations. In practice guaranteed by random sampling.

IV3: Exogeneity

Cov[zi, ui] = 0 (uncorrelated)

IV3 means that the exogenous variables (exogenous regressors and ex-

cluded instruments) are uncorrelated with the error term.

IV4: Error Variance

a) V [ui|zi] = σ2 <∞ (homoscedasticity)

b) V [ui|zi] = σ2
i = g(zi) <∞ (conditional heteroscedasticity)

IV5: Identifiability

Z ′X and E[zix
′
i] = QZX both have rank K+M + 1 ≤ L+M + 1 < N

rank(Z) = L+M +1 and E[ziz
′
i] = QZZ is positive definite and finite

IV5 is also called instrument relevance and requires that there are at

least as many excluded instruments as endogenous regressors, L ≥ K,

that all instruments (but the constant) have non-zero variance and not

too many extreme values, that the instruments are relevant predictors for

the endogenous regressors and that the predicted endogenous regressors

are not perfectly collinear, i.e. that different endogenous regressors are

differently predicted by the instruments.
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4 Estimation with OLS

The OLS estimator of β is biased since E[u|X] 6= 0 and inconsistent since

plim 1
NX

′u 6= 0.

5 Estimation with IV (2SLS)

The instrumental variables estimator for β is

β̂IV = (X ′PZX)
−1
X ′PZy

where PZ = Z(Z ′Z)−1Z ′.

If the number of excluded instruments is larger than the number of

endogenous regressors, L > K, the IV estimator is called over-identified.

If the number of excluded instruments equals the number of endogenous

regressors, L = K, the IV estimator is called just-identified and reduces

to

β̂IV = (Z ′X)
−1
Z ′y .

The IV estimator can always be reformulated as

β̂IV =
(
X̂ ′X

)−1
X̂ ′y =

(
X̂ ′X̂

)−1
X̂ ′y

where X̂ = PZX = Z(Z ′Z)−1Z ′X and the matrix PZ is symmetric and

idempotent. The columns in X̂ are the predicted values x̂k from a re-

gression of xk on Z. The IV estimator can in principal be calculated by

regressing in a first stage each xk on Z and calculating the predictions

x̂k = Z(Z ′Z)−1Z ′xk for all k = 1, ...,K. The M exogenous regressors are

perfectly predicted in this stage x̂k = xk for all k = K + 1, ...,K +M . In

the second stage, y is regressed on X̂ = [1, x̂1, ..., x̂K+M ]. IV estimation

is therefore also called two-stage least squares (2SLS).

6 Small Sample Properties of the IV Estimator

No small sample properties can be analytically established. The IV esti-

mator is in general biased.
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7 Asymptotic Properties of the IV Estimator

The following large sample properties can be established under assump-

tions IV1 through IV4 :

• The IV estimator is consistent:

plim β̂IV = β

• The IV estimator is asymptotically normally distributed:

√
N(β̂IV − β)

d−→N (0,Σ)

where Σ = σ2
[
QXZQ

−1
ZZQZX

]−1
under IV4a.

• The IV estimator is therefore approximately normally distributed:

β̂IV
A∼ N

(
β,Avar[β̂IV ]

)
where the asymptotic variance Avar[β̂] can be consistently esti-

mated under IV4a (homoscedasticity) as

Âvar[β̂IV ] = σ̂2
(
X ′Z(Z ′Z)−1Z ′X

)−1
= σ̂2(X̂ ′X̂)−1

with σ̂2 = û′û/N and under IV4b (heteroscedasticity) as the robust

or Eicker-Huber-White estimator (see handout on “Heteroscedastic-

ity in the linear Model”)

Âvar[β̂IV ] =
(
X̂ ′X̂

)-1( N∑
i=1

û2i x̂ix̂
′
i

)(
X̂ ′X̂

)-1
with ûi = yi − x′iβ̂IV .

Note: The estimated asymptotic variance given in the usual output of

the 2nd stage OLS regression is incorrect since σ̂2 will be based on û =

y − X̂β̂IV rather than û = y −Xβ̂IV .
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8 What are Valid Instruments

Valid instruments are typically derived from natural or random experi-

ments (Angrist and Krueger 2001). Instruments are valid if the following

two requirements are satisfied:

(1) Instrument Exogeneity (IV3): Valid instruments are uncorrelated

with the error term. This requirement needs a strong theoretical

argument and can in general not be tested (see section 9). The

theoretical argument has to

(a) convincingly rule out any direct effect of the instruments on

the dependent variable or any effect running through omitted

variables. This is sometimes called the exclusion restriction.

(b) convincingly rule out any reverse effect of the dependent vari-

able on the instruments.

(c) convincingly describe why the instruments influence the en-

dogenous regressors. This is the influence after controlling for

the effect through exogenous included regressors. If you do not

understand why excluded instruments and endogenous regres-

sors are correlated, then this correlation is likely a sign that

that either (a) or (b) is violated.

(2) Instrument Relevance (IV5): Valid instruments are highly corre-

lated with the endogenous regressors even after controlling for the

exogenous regressors. This requirement can be empirically tested in

the first stage regression (see section 10).

In practice the two requirements are often conflicting.

9 Testing for the Exogeneity of the Instruments

The exogeneity of the instruments (IV3 ) can in general not be tested.

In case we have more instruments than necessary, L > K, we can per-

form a so-called J-test for overidentifying restrictions. This tests whether
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all instruments are exogeneous assuming that a least one of the instru-

ments is exogenous. The J-Test will therefore not necessarily detect a

situation in which all instruments are endogenous.

10 Testing for the Relevance of the Instruments

Instruments that have a low correlation with the endogenous regressors

after controlling for the exogenous regressors are called weak instruments.

There is empirical and theoretical evidence that IV estimation with weak

instruments has poor statistical properties and may perform even poorer

than OLS (surveyed in Stock, Wright and Yogo 2002). In particular,

hypothesis tests may not have correct size and confidence intervals may

not be correct even in very large samples.

The relevance of the instruments is tested in the first-stage regression.

As a rule of thumb, the F -statistic of a joint test whether all excluded

instruments (the variables in zi which are not in xi) are significantly dif-

ferent from zero should be bigger than 10 in case of a single endogenous

regressor. This F -Test should always be reported when reporting IV es-

timates. In case of a single instrument and a single endogenous regressor,

this implies that the t-value for the instrument should be bigger than√
10 ≈ 3.2 or the corresponding p-value below 0.0016.

11 Reduced Form Estimation

In the presence of weak instruments (see section 10), hypothesis tests

based on IV estimates are not correct any more. Reduced form estima-

tion offers a simple approach to test the null hypothesis H0 that all K

coefficients βk related to the endogenous explanatory variables (the vari-

ables in xi which are not in zi) are simultaneously equal to zero.

The reduced form estimation is an OLS regression of the dependent

variable yi on all instruments zi, i.e. on all excluded instruments and all
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exogeneous regressors including a constant

yi = z′iδ + vi

where δ is a (L + M + 1)-dimensional column vector of parameters, and

vi is the error term. Under H0, the excluded instruments do not have an

effect on the dependent variable. The null hypothesis H0 can therefore

be tested by testing whether the L coefficients in δ related to the excluded

instruments (the variables in zi which are not in xi) are simultaneously

equal to zero in the reduced form regression. This can be tested with a

standard joint Wald-test. In case of a single endogenous regressor and a

single instrument, it can be tested with a standard t-test. The reduced

form test does not involve the first-stage regression(s) and is therefore

also correct if the instruments are weak. See Chernozhukov and Hansen

(2008) for motivation and generalizations.

12 Testing for the Exogeneity of the Regressors

We may also want to know if there is an endogeneity problem in an appli-

cation. This is usually tested by a (Durbin-Wu-)Hausmann test. However,

the Hausman test is only valid under homoscedasticity and often involves

the cumbersome generalized inversion of a non-singular matrix.

Exogeneity of the regressors is better tested by running an auxiliary

regression (Wooldridge 2010, eq. 6.25)

yi = x′iβ + v̂′iδ + ei

where v̂i are the residuals from the first stage regressions for all endoge-

nous regressors (the variables xk which are part of X but not Z). The

exogeneity test is then a joint F or Wald-Test that all K coefficients

δ1, ..., δK are equal to zero. This test is robust to heteroscedasticity if the

robust (Eicker-Huber-White) variance estimator is used.

Note: This is a test for the exogeneity of the regressors xi and not for

the exogeneity of the instruments zi. If the instruments are not valid, the

test is not valid either.
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13 Heterogeneous Effects

IV1 assumes that the parameters βk are constant across individuals i.

However, in reality, effects βik likely differ across i, i.e. the effects are

heterogeneous and researchers seek to estimate an average treatment effect

ATEk = E[βik]. Unfortunately, the IV estimator β̂k is in general not an

unbiased estimator for ATEk.

An exception is the case with a single explanatory variable di and a

single instrument zi which are both dummy variables: yi = β0 +β1di +ui.

The dummy variable di = g(zi, vi) ∈ {0, 1} is a function of the instrument

zi ∈ {0, 1} and an error vi and takes value 1 for a treated individual and 0

for an individual in the control group. In this case, the IV estimator β̂1 can

be interpreted as the local average treatment effect (LATE) even if the

individual effects βi1 are heterogeneous provided that zi is independent

of both ui (IV3 ) and vi and provided that the instrument zi does not

decrease the treatment di for any individual i (monotonicity). The latter

condition means that there are no individuals who are treated di = 1

when zi = 0 and would not have been treated di = 0 when zi = 1.

Such individuals are called “defiers” and need to be ruled out for the

LATE interpretation. The monotonicity requirement cannot be tested

and its validity must be defended in the context of a particular application.

“Local” in LATE means that the estimated effect is the ATE only for

the sub-population of those individuals who are treated di = 1 when

zi = 1 and would not have been treated di = 0 when zi = 0. This sub-

population is called “compliers”. Note that different instruments zi will

lead to different sub-populations of compliers and hence different LATE

to be estimated. See Imbens and Angrist (1994) for explanations and

generalizations.
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Implementation in Stata 17

Stata calculates the IV (2SLS) estimator by the command

ivregress 2sls depvar [varlist1] (varlist2=varlist3)

where varlist1 are exogeneous regressors (hence included in X and Z) ,

varlist2 are endogenoues regressors (only included in X) and varlist3

are excluded instruments (only included in Z). For example, load data

webuse hsng2

and regress median monthly rents (rent) of census divisions on the share

of urban population (pcturban) and the median housing value (hsngval)

ivregress 2sls rent pcturban (hsngval = faminc reg2-reg4), vce(robust)

Housing values are likely endogeneous and therefore instrumented by me-

dian family income (faminc) and 3 regional dummies (reg2, reg4, reg4).

The Eicker-Huber-White covariance estimator which is robust to het-

eroscedasticity is reported with the option vce(robust). The option

first requests that the first-stage regression results be displayed. First

stage results are also provided by the postestimation command

estat firststage

which includes the F -statistic to assess weak instruments in case of K = 1

or the so-called rank F-statistic in case of K > 1.

The J-Test is reported with the postestimation command

estat overid

The test for exogeneity of the regressors can be calculated by adding the

first stage residuals to an auxiliary regression. For example,

regress hsngval pcturban faminc reg2-reg4
predict v, resid
regress rent hsngval pcturban v
test v

The reduced form test is performed by

regress rent pcturban faminc reg2-reg4, vce(robust)
test faminc reg2 reg3 reg4
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Implementation in R 4.2.3

The IV (2SLS) estimator is conveniently implemented in the R package

ivreg as command

ivreg(y ~ x1 + x2 + w1 + w2 | z1 + z2 + z3 + w1 + w2)

where x1 and x2 are endogenous regressors, w1 and w2 exogeneous regres-

sors, and z1 to z3 are excluded instruments. For example, load data

library(haven)
hsng2 <- read.dta("http://www.stata-press.com/data/r17/hsng2.dta")

and regress median monthly rents (rent) of census divisions on the share

of urban population (pcturban) and the median housing value (hsngval)

library(ivreg)
iv <- ivreg(rent~hsngval+pcturban|pcturban+faminc+reg2+reg3+reg4,

data = hsng2)
summary(iv)

Housing values are likely endogeneous and therefore instrumented by me-

dian family income (faminc) and 3 regional dummies (reg2, reg4, reg4).

The Eicker-Huber-White covariance estimator which is robust to het-

eroscedastic error terms and corrected for degrees of freedom in small

samples is reported after estimation with

library(sandwich)
library(lmtest)
coeftest(iv, vcov=vcovHC, type="HC1")

First stage results are reported by explicitly estimating them. E.g,

first <- lm(hsngval~pcturban+faminc+reg2+reg3+reg4, data = hsng2)
summary(first)

In case of a single endogenous variable (K = 1), the F -statistic to assess

weak instruments is reported after estimating the first stage with e.g.

waldtest(first, .~.-faminc-reg2-reg3-reg4)

or in case of heteroscedatistic errors

waldtest(first, .~.-faminc-reg2-reg3-reg4, vcov=vcovHC(first, type="HC1"))
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