Elements of Probability Theory

1 Random Variables and Distributions

A random variable is a variable whose values are determined by a probability distribution. This is a casual way of defining random variables which is sufficient for our level of analysis. For more advanced probability theory, a random variable will be defined as a real-valued function over some probability space.

In section 1 to 3, a random variable is denoted by capital letters, e.g. X, whereas its realizations are denoted by small letters, e.g. x.

1.1 Univariate Random Variables and Distributions

A univariate discrete random variable is a variable that takes a countable number K of real numbers with certain probabilities. The probability that the random variable X takes the value x_k among the K possible realizations is given by the probability distribution

$$P(X = x_k) = P(x_k) = p_k$$

with $k = 1, 2, ..., K$. K may be ∞ in some cases. This can also be written as

$$P(x_k) = \begin{cases}
 p_1 & \text{if } X = x_1 \\
 p_2 & \text{if } X = x_2 \\
 \vdots & \\
 p_K & \text{if } X = x_K
\end{cases}$$

Note that

$$\sum_{k=1}^{K} p_k = 1.$$
density function (pdf) \(f(x) \). The nonnegative function \(f(x) \) is such that

\[
P(x_1 \leq X \leq x_2) = \int_{x_1}^{x_2} f(x)dx.
\]

defines the probability that \(X \) takes a value in the interval \([x_1, x_2]\). Note that there is no chance that \(X \) takes exactly the value \(x \), \(P(X = x) = 0 \). The probability that \(X \) takes any value on the real line is

\[
\int_{-\infty}^{\infty} f(x)dx = 1.
\]

The distribution of a univariate random variable \(X \) is alternatively described by the cumulative distribution function (cdf)

\[
F(x) = P(X < x).
\]

The cdf of a discrete random variable \(X \) is

\[
F(x) = \sum_{x_k \leq x} P(X = x_k) = \sum_{x_k \leq x} p_k,
\]

and of a continuous random variable \(X \)

\[
F(x) = \int_{-\infty}^{x} f(t)dt
\]

\(F(x) \) has the following properties:

- \(F(x) \) is monotonically nondecreasing
- \(F(-\infty) = 0 \) and \(F(\infty) = 1 \).
- \(F(x) \) is continuous to the left

1.2 Bivariate Random Variables and Distributions

A bivariate continuous random variable is a variable that takes a continuum of values in the plane. The distribution of a bivariate continuous random variable \((X, Y)\) can be characterized by a joint density function or joint probability density function, \(f(x, y) \). The nonnegative function \(f(x, y) \) is such that

\[
P(x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2) = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y)dydx
\]

defines the probability that \(X \) and \(Y \) take values in the interval \([x_1, x_2]\) and \([y_1, y_2]\), respectively. Note that

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y)dydx = 1.
\]

The marginal density function or marginal probability density function is given by

\[
f(x) = \int_{-\infty}^{\infty} f(x, y)dy
\]

such that

\[
P(x_1 \leq X \leq x_2) = P(x_1 \leq X \leq x_2, -\infty \leq Y \leq \infty) = \int_{x_1}^{x_2} f(x)dx.
\]

The conditional density function or conditional probability density function with respect to the event \(\{Y = y\} \) is given by

\[
f(y|x) = \frac{f(x, y)}{f(x)}
\]

provided that \(f(x) > 0 \). Note that

\[
\int_{-\infty}^{\infty} f(y|x)dy = 1.
\]

Two random variables \(X \) and \(Y \) are called independent, if and only if

\[
f(x, y) = f(x) \cdot f(y)
\]

If \(X \) and \(Y \) are independent, then:

- \(f(y|x) = f(y) \)
- \(P(x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2) = P(x_1 \leq X \leq x_2) \cdot P(y_1 \leq Y \leq y_2) \)
More generally, if a finite set of n continuous random variables $X_1, X_2, X_3, \ldots, X_n$ are mutually independent, then

$$f(x_1, x_2, x_3, \ldots, x_n) = f(x_1) \cdot f(x_2) \cdot f(x_3) \cdot \ldots \cdot f(x_n).$$

2 Moments

2.1 Expected Value or Mean

The expected value or mean of a discrete random variable with probability distribution $P(x_k)$ and $k = 1, 2, \ldots, K$ is defined as

$$E[X] = \sum_{k=1}^{K} x_k P(x_k)$$

if the series converges absolutely.

The expected value or mean of a continuous univariate random variable with density function $f(x)$ is defined as

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

if the integral exists.

For a random variable Z which is a continuous function ϕ of a discrete random variable X, we have:

$$E[Z] = E[\phi(X)] = \sum_{k=1}^{K} \phi(x_k) P(x_k)$$

For a random variable Z which is a continuous function ϕ of the continuous random variables X and Y, we have:

$$E[Z] = E[\phi(X)] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$$

$$E[Z] = E[\phi(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x, y) f(x, y) dx dy$$

The following rules hold in general, i.e. for discrete, continuous and mixed types of random variables:

- $E[\alpha] = \alpha$
- $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$
- $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$
- $E[X Y] = E[X] E[Y]$ if X and Y are independent

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ are constants.

2.2 Variance and Standard Deviation

The variance of a univariate random variable X is defined as

$$V[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

The variance has the following properties:

- $V[X] \geq 0$
- $V[X] = 0$ if and only if $X = E[X]$ (if the random variable is constant)

The following rules hold in general, i.e. for discrete, continuous and mixed types of random variables:

- $V[\alpha X + \beta] = \alpha^2 V[X]$
- $V[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} V[X_i]$ if X_i and X_j independent for all $i \neq j$

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ are constants.

Instead of the variance, one often considers the standard deviation

$$\sigma_X = \sqrt{V[X]}.$$
2.3 Higher order Moments

The j-th moment around zero is defined as

$$E \left[(X - E[X])^j\right].$$

2.4 Covariance and Correlation

The Covariance between two random variables X and Y is defined as:

$$\text{Cov}[X,Y] = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY] - E[X]E[Y]$$

$$= E[(X - E[X])Y] = E[X(Y - E[Y])].$$

The following rules hold in general, i.e. for discrete, continuous and mixed types of random variables:

- $\text{Cov}[\alpha X + \gamma, \beta Y + \mu] = \alpha\beta \text{Cov}[X,Y]$

- $\text{Cov}[X_1 + X_2, Y_1 + Y_2]$
 $$= \text{Cov}[X_1, Y_1] + \text{Cov}[X_1, Y_2] + \text{Cov}[X_2, Y_1] + \text{Cov}[X_2, Y_2]$$

- $\text{Cov}[X,Y] = 0$ if X and Y are independent

where $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}$, $\gamma \in \mathbb{R}$ and $\mu \in \mathbb{R}$ are constants.

The correlation coefficient between two random variables X and Y is defined as:

$$\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y},$$

where σ_X and σ_Y denote the corresponding standard deviations. The correlation coefficient has the following property:

- $-1 \leq \rho_{X,Y} \leq 1$

The following rule holds:

- $\rho_{\alpha X + \gamma, \beta Y + \mu} = \rho_{X,Y}$

- $\rho_{X,Y} = 0$ if X and Y are independent

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ are constants.

2.5 Conditional Expectation and Variance

Let (X,Y) be a bivariate discrete random variable and $P(y_k|X)$ the conditional probability of $Y = y_k$ given X. Then the conditional expected value or conditional mean of Y given X is

$$E[Y|X] = E_{Y|X}[Y] = \sum_{k=1}^{K} y_k P(y_k|X).$$

Let (X,Y) be a bivariate continuous random variable and $f(y|x)$ the conditional density of Y given X. Then the conditional expected value or conditional mean of Y given X is

$$E[Y|X] = E_{Y|X}[Y] = \int_{-\infty}^{\infty} y f(y|x) \, dy.$$

The law of iterated means or law of iterated expectations holds in general, i.e. for discrete, continuous or mixed random variables:

$$E[X] = E[E[Y|X]].$$

The conditional variance of Y given X is given by

The law of total variance is

$$V[Y] = E_X[V[Y|X]] + V_X[E[Y|X]].$$
3 Random Vectors and Random Matrices

In this section we denote matrices (random or non-random) by bold capital letters, e.g. \(\mathbf{X}\) and vectors by small letters, e.g. \(\mathbf{x}\).

Let \(\mathbf{x} = (x_1, \ldots, x_n)'\) be a \((n \times 1)\)-dimensional vector such that each element \(x_i\) is a random variable. Let \(\mathbf{X}\) be a \((n \times k)\)-dimensional matrix such that each element \(x_{ij}\) is a random variable. Let \(\mathbf{a} = (a_1, \ldots, a_n)'\) be a \(n \times 1\)-dimensional vector of constants and \(\mathbf{A}\) a \((m \times n)\) matrix of constants.

The expectation of a random vector, \(E[\mathbf{x}]\), and of a random matrix, \(E[\mathbf{X}]\), summarize the expected values of its elements, respectively:

\[
E[\mathbf{x}] = \begin{pmatrix} E[x_1] \\ E[x_2] \\ \vdots \\ E[x_n] \end{pmatrix} \quad \text{and} \quad E[\mathbf{X}] = \begin{pmatrix} E[x_{11}] & E[x_{12}] & \cdots & E[x_{1k}] \\ E[x_{21}] & E[x_{22}] & \cdots & E[x_{2k}] \\ \vdots & \vdots & \ddots & \vdots \\ E[x_{n1}] & E[x_{n2}] & \cdots & E[x_{nk}] \end{pmatrix}.
\]

The following rules hold:

- \(E[\mathbf{a}'\mathbf{x}] = \mathbf{a}'E[\mathbf{x}]\)
- \(E[\mathbf{AX}] = \mathbf{A}E[\mathbf{X}]\)
- \(E[tr(\mathbf{X})] = tr(E[\mathbf{X}])\) for \(\mathbf{X}\) a quadratic matrix
- \(E[V(\mathbf{X})] = tr(E[\mathbf{X}])\) for \(\mathbf{X}\) a quadratic matrix

The variance-Covariance matrix of a random vector, \(V(\mathbf{x})\), summarizes all variances and Covariances of its elements:

\[
V(\mathbf{x}) = E[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])'] = E[\mathbf{x}\mathbf{x}' - E[\mathbf{x}][E[\mathbf{x}]]'] =
\begin{pmatrix}
V[x_1] & \text{Cov}[x_1, x_2] & \cdots & \text{Cov}[x_1, x_n] \\
\text{Cov}[x_2, x_1] & V[x_2] & \cdots & \text{Cov}[x_2, x_n] \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cov}[x_n, x_1] & \text{Cov}[x_n, x_2] & \cdots & V[x_n]
\end{pmatrix}.
\]

The following rules hold:

- \(V[\mathbf{a}'\mathbf{x}] = \mathbf{a}'V[\mathbf{x}]\mathbf{a}\)
- \(V[\mathbf{AX}] = \mathbf{A}V[\mathbf{x}]\mathbf{A}'\)

where the \((m \times n)\) dimensional matrix \(\mathbf{A}\) with \(m \leq n\) has full row rank.

If the variance-Covariance matrix \(V[\mathbf{x}]\) is positive definite (p.d.) then all random elements and all linear combinations of its random elements have strictly positive variance:

\[
V[\mathbf{a}'\mathbf{x}] = \mathbf{a}'V[\mathbf{x}]\mathbf{a} > 0 \text{ for all } \mathbf{a} \neq 0.
\]

4 Important Distributions

4.1 Univariate Normal Distribution

The density of the univariate normal distribution is given by:

\[
f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}.
\]

The normal distribution is characterized by the two parameters \(\mu\) and \(\sigma\). The mean of the normal distribution is \(E[\mathbf{X}] = \mu\) and the variance \(V[\mathbf{X}] = \sigma^2\). We write \(X \sim N(\mu, \sigma^2)\).

The univariate normal distribution with mean \(\mu = 0\) and variance \(\sigma^2 = 1\) is called the standard normal distribution \(N(0, 1)\).

4.2 Bivariate Normal Distribution

The density of the bivariate normal distribution is

\[
f(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} \right] \right\}.
\]
If \((X, Y)\) follows a bivariate normal distribution, then:

- The marginal densities \(f(x)\) and \(f(y)\) are univariate normal.
- The conditional densities \(f(x|y)\) and \(f(y|x)\) are univariate normal.
- \(E[X] = \mu_X, V[X] = \sigma_X^2, E[Y] = \mu_Y, V[Y] = \sigma_Y^2.\)
- The correlation coefficient between \(X\) and \(Y\) is \(\rho_{X,Y} = \rho.\)
- \(E[Y|X] = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (X - \mu_X)\) and \(V[Y|X] = \sigma_Y^2 (1 - \rho^2).\)

The above properties characterize the normal distribution. It is the only distribution with all these properties.

Further important properties:

- If \((X, Y)\) follows a bivariate normal distribution, then \(aX + bY\) is also normally distributed:
 \[aX + bY \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2 + 2\rho \sigma_X \sigma_Y).\]

The reverse implication is not true.

- If \(X\) and \(Y\) are bivariate normally distributed with \(\text{Cov}[X,Y] = 0,\) then \(X\) and \(Y\) are independent.

4.3 Multivariate Normal Distribution

Let \(x = (x_1, \ldots, x_n)'\) be a \(n\)-dimensional vector such that each element \(x_i\) is a random variable. In addition let \(E[x] = \mu = (\mu_1, \ldots, \mu_n)\) and \(V[x] = \Sigma\) with

\[
\Sigma = \begin{pmatrix}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn}
\end{pmatrix}
\]

where \(\sigma_{ij} = \text{Cov}[x_i, x_j].\)