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The Bootstrap

1 Introduction

The bootstrap is a method to derive properties (standard errors, confi-

dence intervals and critical values) of the sampling distribution of estima-

tors. It is very similar to Monte Carlo techniques (see the corresponding

hand-out). However instead of fully specifying the data generating pro-

cess (DGP), we use information from the sample.

In short, the bootstrap takes the sample (the values of the indepen-

dent and dependent variables) as the population and the estimates of

the sample as true values. Instead of drawing from a specified distribu-

tion (such as the normal) by a random number generator, the bootstrap

draws with replacement from the sample. It therefore takes the empirical

distribution function (the step-function) as true distribution function. In

the example of a linear regression model, the sample provides the em-

pirical distribution for the dependent variable, the independent variables

and the error term as well as values for constant, slope and error vari-

ance. The great advantage compared to Monte Carlo methods is that

we neither make assumption about the distributions nor about the true

values of the parameters.

The bootstrap is typically used for consistent but biased estimators.

In most cases we know the asymptotic properties of these estimators. So

we could use asymptotic theory to derive the approximate sampling distri-

bution. That is what we usually do when using, for example, maximum

likelihood estimators. The bootstrap is an alternative way to produce

approximations for the true small sample properties. So why (or when)

would we use the bootstrap? There are two main reasons:
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1a) The asymptotic sampling distribution is very difficult to derive.

1b) The asymptotic sampling distribution is too difficult to derive for

me. This might apply to many multi-stage estimators. Example:

the two stage estimator of the heckman sample selection model.

1c) The asymptotic sampling distribution is too time-consuming and

error-prone for me. This might apply to forecasts or statistics

that are (nonlinear) functions of the estimated model parameters.

Example: elasticities calculated from slope coefficients.

2 ) The bootstrap produces “better” approximations for some proper-

ties. It can be shown that bootstrap approximations converge faster

for certain statistics1 (e.g. statistics with the standard normal

or Chi-squared as limiting distribution) than the approximations

based on asymptotic theory. Example: the t-statistic of a mean or

a slope coefficient.

Note that both asymptotic theory and the bootstrap only provide approx-

imations for finite sample properties. The bootstrap produces consistent

approximations for the sampling distribution for a variety of estimators

such as the mean, median, the coefficients in OLS and most econometric

models. However, there are estimators (e.g. the maximum) for which

the bootstrap fails to produce consistent properties.

This handout covers the nonparametric bootstrap with paired sam-

pling. This method is appropriate for randomly sampled cross-section

data. Data from complex random samplings procedures (e.g. stratified

sampling) require special attention. See the handout on ”Clustering”.

Time-series data and panel data also require more sophisticated boot-

strap techniques.

1These statistics are called asymptotically pivotal, i.e. there asymptotic distribu-
tions are independent of the data and of the true parameter values.
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2 The Method: Nonparametric Bootstrap

2.1 Bootstrap Samples

Consider a sample with n = 1, ..., N independent observations of a de-

pendent variable y and K +1 explanatory variables x. A paired bootstrap

sample is obtained by independently drawing N pairs (xi, yi) from the

observed sample with replacement. The bootstrap sample has the same

number of observations, however some observations appear several times

and others never. The bootstrap involves drawing a large number B of

bootstrap samples. An individual bootstrap sample is denoted (x∗
b , y

∗
b ),

where x∗
b is a N×(K+1) matrix and y∗

b an N -dimensional column vector

of the data in the b-th bootstrap sample.

2.2 Bootstrap Standard Errors

The empirical standard deviation of a series of bootstrap replications of

θ̂ can be used to approximate the standard error se(θ̂) of an estimator θ̂.

1. Draw B independent bootstrap samples (x∗
b , y

∗
b ) of size N from

(x, y). Usually B = 100 replications are sufficient.

2. Estimate the parameter θ of interest for each bootstrap sample:

θ̂∗b for b = 1, ..., B.

3. Estimate se(θ̂) by

ŝe =

√√√√ 1

B − 1

B∑
b=1

(θ̂∗b − θ̂∗)2

where θ̂∗ = 1
B

∑B
b=1 θ̂∗b .

The whole covariance matrix V (θ̂) of a vector θ̂ is estimated analogously.
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In case the estimator θ̂ is consistent and asymptotically normally dis-

tributed, bootstrap standard errors can be used to construct approximate

confidence intervals and to perform asymptotic tests based on the normal

distribution.

2.3 Confidence Intervals Based on Bootstrap Percentiles

We can construct a two-sided equal-tailed (1 − α) confidence interval

for an estimate θ̂ from the empirical distribution function of a series of

bootstrap replications. The (α/2) and the (1−α/2) empirical percentiles

of the bootstrap replications are used as lower and upper confidence

bounds. This procedure is called percentile bootstrap.

1. Draw B independent bootstrap samples (x∗
b , y

∗
b ) of size N from

(x, y). It is recommended to use B = 1000 or more replications.

2. Estimate the parameter θ of interest for each bootstrap sample:

θ̂∗b for b = 1, ..., B.

3. Order the bootstrap replications of θ̂ such that θ̂∗1 ≤ ... ≤ θ̂∗B.

The lower and upper confidence bounds are the B · α/2-th and

B · (1 − α/2)-th ordered elements, respectively. For B = 1000

and α = 5% these are the 25th and 975th ordered elements. The

estimated (1 − α) confidence interval of θ̂ is

[θ̂∗B·α/2, θ̂
∗
B·(1−α/2)].

Note that these confidence intervals are in general not symmetric.

2.4 Bootstrap Hypothesis Tests

The approximate confidence interval in section 2.3 can be used to perform

an approximate two-sided test of a null hypothesis of the form H0 : θ =

θ0. The null hypothesis is rejected on the significance level α if θ0 lies

outside the two-tailed (1 − α) confidence interval.
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2.5 The bootstrap-t

Assume that we have consistent estimates of θ̂ and ŝe(θ̂) at hand and

that the asymptotic distribution of the t-statistic is the standard normal

t =
θ̂ − θ0

ŝe(θ̂)

d−→N(0, 1).

Then we can calculate approximate critical values from percentiles of the

empirical distribution of a series bootstrap replications for the t-statistic.

1. Consistently estimate θ and se(θ̂) using the observed sample:

θ̂, ŝe(θ̂)

2. Draw B independent bootstrap samples (x∗
b , y

∗
b ) of size N from

(x, y). It is recommended to use B = 1000 or more replications.

3. Estimate the t-value of θ̂ for each bootstrap sample:

t∗b =
θ̂∗b − θ̂

ŝe∗b(θ̂)
for b = 1, ..., B

where θ̂∗b and ŝe∗b(θ̂) are estimates of the parameter θ and its stan-

dard error using the bootstrap sample.

4. Order the bootstrap replications of t such that t∗1 ≤ ... ≤ t∗B. The

lower critical value and the upper critical values are then the B·α/2-

th and B · (1 − α/2)-th elements, respectively. For B = 1000 and

α = 5% these are the 25th and 975th ordered elements.

tα/2 = t∗B·α/2, t1−α/2 = t∗B·(1−α/2)

These critical values can now be used in otherwise usual t-tests for θ.

The above bootstrap lower tB·α/2) and upper tB·(1−α/2) critical val-

ues generally differ in absolute values. Alternatively, we can estimate

symmetric critical values by adapting step 4:
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4. Order the bootstrap replications of t such that |t∗1| ≤ ... ≤ |t∗B|.
The absolute critical value is then the the B · (1 − α)-th element.

For B = 1000 and α = 5% this is the 950th ordered element. The

lower and upper critical values are, respectively:

tα/2 = −|t∗B·(1−α)|, t1−α/2 = |t∗B·(1−α)|

The symmetric bootstrap-t is the preferred method for bootstrap hy-

pothesis testing as it makes use of the faster convergence of t-statistics

relative to asymptotic approximations (i.e. critical values from the t- or

standard normal tables).

The bootstrap-t procedure can also be used to create confidence inter-

vals using bootstrap critical values instead of the ones from the standard

normal tables:

[θ̂ + tα/2 · ŝe(θ̂), θ̂ + t1−α/2 · ŝe(θ̂)]
The confidence interval from bootstrap-t is not necessarily better then the

percentile method. However, it is consistent with bootstrap-t hypothesis

testing.

3 Implementation in Stata 10.0

Stata has very conveniently implemented the bootstrap for cross-section

data. Bootstrap sampling and summarizing the results is automatically

done by Stata. The Stata commands are shown for the example of a

univariate regression of a variable y on x.

Case 1: Bootstrap standard errors are implemented as option

in the stata command

Many stata estimation commands such as regress have a built-in vce

option to calculate bootstrap covariance estimates. For example

regress y x, vce(bootstrap, reps(100))
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runs B = 100 bootstrap iterations of a linear regression and reports

bootstrap standard errors along with confidence intervals and p-values

based on the normal approximation and bootstrap standard errors. The

postestimation command

regress y x, vce(bootstrap, reps(1000))
estat bootstrap, percentile

reports confidence bounds based on bootstrap percentiles rather than the

normal approximation. Remember that it is recommended to use at least

B = 1000 replications for bootstrap percentiles. The percentiles to be

reported are defined with the confidence level option. For example, the

0.5% and 99.5% percentiles that create the 99% confidence interval are

reported by

regress y x, vce(bootstrap, reps(1000)) level(99)
estat bootstrap, percentile

Case 2: The statistic of interest is returned by a single stata

command

The command

bootstrap, reps(100): reg y x

runs B = 100 bootstrap iterations of a linear regression and reports

bootstrap standard errors along with confidence intervals and p-values

based on the normal approximation and bootstrap standard errors. The

postestimation command estat bootstrap is used to report confidence

intervals based on bootstrap percentiles from e.g. B = 1000 replications:

bootstrap, reps(1000): reg y x
estat bootstrap, percentile

We can select an specific statistic to be recorded in the bootstrap

iterations. For example the slope coefficient only:

bootstrap _b[x], reps(100): reg y x
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By default, Stata records the whole coefficient vector b. Any value

returned by a stata command (see ereturn list) can be selected.

We can also record functions of returned statistics. For example, the

following commands create bootstrap critical values on the 5% signifi-

cance level of the t-statistic for the slope coefficient:

reg y x
scalar b = _b[x]
bootstrap t=((_b[x]-b)/_se[x]), reps(1000): reg y x, level(95)
estat bootstrap, percentile

The respective symmetric critical values on the 5% significance level are

calculated by

reg y x
scalar b = _b[x]
bootstrap t=abs((_b[x]-b)/_se[x]), reps(1000): reg y x, level(90)
estat bootstrap, percentile

We can save the bootstrap replications of the selected statistics in

a normal stata .dta file to further investigate the bootstrap sampling

distribution. For example,

bootstrap b=_b[x], reps(1000) saving(bs_b, replace): reg y x
use bs_b, replace
histogram b

shows the bootstrap histogram of the sampling distribution of the slope

coefficient.

Note: it is important that all observations with missing values are

dropped from the dataset before using the bootstrap command. Missing

values will lead to different bootstrap sample sizes.

Case 3: The statistics of interest is calculated in a series of stata

commands

The first task is to define a program that produces the statistic of inter-

est for a single sample. This program might involve several estimation
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commands and intermediate results. For example, the following program

calculates the t-statistic of the slope coefficient in a regression of y on x

program tstat, rclass
version 10.0
reg y x
return scalar t = (_b[x]-b)/_se[x]

end

The last line of the program specifies the value that is investigated in

the bootstrap: (β̂ − b)/ŝe(β̂) which will be returned under the name t.

The definition of the program can be directly typed into the command

window or is part of a do-file. The program should now be tested by

typing

reg y x
scalar b = _b[x]
tstat
return list

The bootstrap is then performed by the Stata commands

reg y x
scalar b = _b[x]
bootstrap t=r(t), reps(1000): tstat
estat bootstrap, percentile

As in case 2, the bootstrap results can be saved and evaluated man-

ually. For example,

reg y x
scalar b = _b[x]
bootstrap t=r(t), reps(1000) saving(bs_t): tstat
use bs_t, replace
centile t, centile(2.5, 97.5)
gen t_abs = abs(t)
centile t_abs, centile(95)

reports both asymmetric and symmetric critical values on the 5% signif-

icance level for t-tests on the slope coefficient.
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4 See also ...

There is much more about the bootstrap than presented in this handout.

Instead of paired resampling there is residual resampling which is often

used in time-series context. There is also a parametric bootstrap. The

bootstrap can also be used to reduce the small sample bias of an estima-

tor by bias corrections. The m out of n bootstrap is used to overcome

some bootstrap failures. A method very similar to the bootstrap is the

jackknife.
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