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Monte Carlo Experiments

1 Introduction

Doing econometrics means estimating parameters, such as the mean of a
population, the coefficients in a linear regression or the autocorrelation
of a time series, given a sample of real world data. Besides the point
estimate itself, we would like to know how close our estimate is to the
true value. In other words we would like to know its “accuracy” or
“precision”. An estimator is a (maybe complicated) function of random
variables and therefore itself a random variable. The properties of an
estimator are fully described by its probability distribution (the so-called
sampling distribution). The sampling-distribution can then be used to
perform tests against hypothesis. Often we are especially interested in
some moments of the sampling distribution, such as the mean and the
variance.

In some cases it is possible to calculate the sampling distribution
from the econometric model. But sometimes, especially for finite (small)
samples, this is either not possible or very difficult. In these cases Monte
Carlo experiments are an intuitive way to obtain information about the

sampling distribution and hence about the “quality” of the estimator.

2 The Method

The term “Monte Carlo” refers to procedures in which quantities of in-
terest are approximated by generating many random realisations of a

stochastic process and averaging them in some way. In statistics, the
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quantities of interest are the distributions of estimators and test statis-
tics, the size of a test statistic under the null hypothesis, or the power of
a test statistic under some specified alternative hypothesis (see Davidson
and MacKinnon 1993, 731). In economic theory Monte Carlo techniques
are used to explore the quantitative properties of models with stochastic
elements, for example the correlation between variables in real business
cycle models.

How can we use Monte Carlo techniques to find the sampling dis-
tribution of an estimator? In the real world, we usually observe just
one sample of a certain size IV, that will give us just one estimate. The
Monte Carlo experiment is a lab situation, where we replicate the real
world study many (R) times. Every time, we draw a different sample of
size N from the original population. Thus, we can calculate the estimate
many times and any estimate will be a bit different. The empirical distri-
bution of these many estimates approximates the true of the estimator.

A Monte Carlo experiment involves the following steps:

(1) Draw a (pseudo) random sample of size N for the stochastic el-
ements of the stochastic model from their respective probability

distribution functions

(2) Assume values for the exogenous parts of the model or draw them

from their respective distribution function
(3) Calculate the endogenous parts of the statistical model
(4) Calculate the value (e.g. the estimate) you are interested in
(5) Replicate step 1 to 4 R times
(6) Examine the empirical distribution of the R values

Let’s explain the above elements in an example: the bivariate ordinary
least squares model
Ye = Bo + P + &
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with &, ~ N(0,0?). The stochastic element in the model is &, the exoge-
nous part is x; is either fixed are also stochastic. Assuming values for the
true parameters a and b and drawing values for the stochastic element,
we can simulate the endogenous variable ;. The values of interest are
then the least squares estimates & and B in the simulated data set.

In the core of Monte Carlo Experiments is the random number gen-
erator. A random number generator produces a sequence of numbers,
that are draws from a specific identically and independently distributed
random variable. In practice, this is a mathematical algorithm, that pro-
duces a sequence of so-called pseudo random numbers. These numbers
are in fact not random as the algorithm describes the purely determinis-
tic relationship between the numbers. However, with a good generator,
they are indistinguishable from sequences of genuinely random numbers
and pass usual statistical tests of independence. Judd (1998) provides a
thorough treatment of different pseudo-random number generators.

There is an important limitation of Monte Carlo experiments: We
must completely specify the Statistical Model (Data Generating Process
DGP). This implies, that we must assume the deterministic parts of
the model, the form and the exact parameters of the distribution of the
stochastic (error) term and the distribution of exogenous variables. This
is a great loss of generality as the results of the experiment are apply

only to the assumptions made.
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3 Implementation in Stata 10.0

Stata has a built-in random number generator:

uniform()

returns uniformly distributed pseudo-random numbers on the interval
[0,1). Random numbers for other continuous distributions are calculated

using the inverse of the desired distribution, for example

generate z = invnorm(uniform())*2+5

generates a new variable z with _N (the number of observations in the cur-
rent dataset) independent draws from a normal distribution with variance
22 and mean 5. See help drawnorm on how to draw a random vector
from the multivariate normal distribution. You can reset the random
number generator with set seed 0.

The different steps of a Monte Carlo experiment in Stata are explained
by an investigation into the properties of the OLS estimator in a bivariate
regression model.

The first task in setting up the Monte Carlo experiment in Stata is
to define a program that produces the result of a single experiment, i.e.
that performs the steps (1) to (4).

program olssim, rclass
version 10.0
drop _all
set obs 100
generate e = invnorm(uniform())*2
generate x = uniform()*10
generate y =1 + 0.5 * x + e
regress y X
return scalar b0

return scalar bl
end

_coef [_cons]
_coef [x]

The above program clears the data in memory and sets the number of

observations in each sample to N = 100. Step (1): the realized error
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terms e are drawn form the centered normal distribution with variance 22.
Step (2): the independent variable x is drawn from a uniform distribution
on [0,10). Step (3): the realizations of the dependent variable y are
calculated according to the DGP as y = By+ 12 +¢, with true parameter
values fp = 1 and #; = 0.5. Step (4): the estimates By and f3; are
estimated in the regression of y on z. The last two lines of the program
specify the values that are investigated in this Monte Carlo experiment:
Bo and Bl which will be returned under the names aConst and aSlope,
respectively. The definition of the program can be directly typed into
the command window or is part of a do-file.

Step (5) is the replication of the single experiment R times. There
is a special Stata command simulate that performs this replication and

produces a new dataset with the results.
simulate "olssim" b0 = r(b0) bl = r(bl), reps(1000)

performs the single experiment R = 1000 times and produces a new
dataset with 1000 observations of the two variables b0 and b1. Each row
contains the estimated parameters of a single experiment.

In step (6), we examine the results of the Monte Carlo experiment.
This is done by inspecting the new variables b0 and b1 using the usual
command for descriptive statistics, such as summarize and histogram.

We will save the program together with the analysis of the results in
a do—ﬁleﬂ This do-file should begin with the command

capture program drop olssim

in order to clear the program from the memory before it is re-defined.

IMore sophisticated implementations of Monte-Carlo experiment would declare
the program in a separate so-called ado-file. The program will generally take several
arguments that describe the details of the experiments, such as the true parameter

values.
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4 Implementation in Matlab

Matlab has a good built-in random number generator. We will use the
functions rand and randn, which are included in the basic Matlab instal-
lation. The rand function generates random numbers whose elements
are uniformly distributed in the interval (0,1). Y = rand(m,n) returns
an m-by-n matrix of random entries. rand, by itself, returns a scalar
whose value changes each time it’s referenced. We can reset the random
number generator with rand (’ state’,0). The randn function generates
random numbers whose elements are normally distributed with mean 0
and variance 1. Y = randn(m,n) returns an m-by-n matrix of random
entries. randn, by itself, returns a scalar whose value changes each time
it’s referenced. Again, randn(’state’,0). resets the generator. Mat-
lab’s statistics toolbox contains random number generators for a variety
of distribution functions.

The Monte Carlo experiment is then performed by a simple for loop
over the 7 = 1...R replications. Each replication within the loops first cre-
ates the data vectors with the N random draws, calculates the statistic(s)

of interest and stores it(them) in the rth row of a new R x 1 vector(s).
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